quanter.py 12.2 KB
Newer Older
F
ftian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import IrGraph
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass
from paddle.fluid.contrib.slim.quantization import TransformForMobilePass
S
slf12 已提交
23
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
S
slf12 已提交
24
from paddle.fluid.contrib.slim.quantization import AddQuantDequantPass
F
ftian 已提交
25 26
from paddle.fluid import core

S
slf12 已提交
27 28 29 30 31 32 33
WEIGHT_QUANTIZATION_TYPES = [
    'abs_max', 'channel_wise_abs_max', 'range_abs_max',
    'moving_average_abs_max'
]
ACTIVATION_QUANTIZATION_TYPES = [
    'abs_max', 'range_abs_max', 'moving_average_abs_max'
]
F
ftian 已提交
34
VALID_DTYPES = ['int8']
S
slf12 已提交
35 36
TRANSFORM_PASS_OP_TYPES = ['conv2d', 'depthwise_conv2d', 'mul']
QUANT_DEQUANT_PASS_OP_TYPES = ['elementwise_add', 'pool2d']
F
ftian 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49

_quant_config_default = {
    # weight quantize type, default is 'abs_max'
    'weight_quantize_type': 'abs_max',
    # activation quantize type, default is 'abs_max'
    'activation_quantize_type': 'abs_max',
    # weight quantize bit num, default is 8
    'weight_bits': 8,
    # activation quantize bit num, default is 8
    'activation_bits': 8,
    # ops of name_scope in not_quant_pattern list, will not be quantized
    'not_quant_pattern': ['skip_quant'],
    # ops of type in quantize_op_types, will be quantized
S
slf12 已提交
50 51
    'quantize_op_types':
    ['conv2d', 'depthwise_conv2d', 'mul', 'elementwise_add', 'pool2d'],
F
ftian 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
    'dtype': 'int8',
    # window size for 'range_abs_max' quantization. defaulf is 10000
    'window_size': 10000,
    # The decay coefficient of moving average, default is 0.9
    'moving_rate': 0.9,
    # if set quant_weight_only True, then only quantize parameters of layers which need to be quantized,
    # and activations will not be quantized.
    'quant_weight_only': False
}


def _parse_configs(user_config):
    """
    check user configs is valid, and set default value if user not config.
    Args:
        user_config(dict):the config of user.
    Return:
        configs(dict): final configs will be used.
    """

    configs = copy.deepcopy(_quant_config_default)
    configs.update(user_config)

    # check configs is valid
    assert configs['weight_quantize_type'] in WEIGHT_QUANTIZATION_TYPES, \
        "Unknown weight_quantize_type: '%s'. It can only be " + " ".join(WEIGHT_QUANTIZATION_TYPES)

    assert configs['activation_quantize_type'] in ACTIVATION_QUANTIZATION_TYPES, \
        "Unknown activation_quantize_type: '%s'. It can only be " + " ".join(ACTIVATION_QUANTIZATION_TYPES)

    assert isinstance(configs['weight_bits'], int), \
        "weight_bits must be int value."

    assert (configs['weight_bits'] >= 1 and configs['weight_bits'] <= 16), \
        "weight_bits should be between 1 and 16."

    assert isinstance(configs['activation_bits'], int), \
        "activation_bits must be int value."

    assert (configs['activation_bits'] >= 1 and configs['activation_bits'] <= 16), \
        "activation_bits should be between 1 and 16."

    assert isinstance(configs['not_quant_pattern'], list), \
        "not_quant_pattern must be a list"

    assert isinstance(configs['quantize_op_types'], list), \
        "quantize_op_types must be a list"

S
slf12 已提交
101 102 103 104 105 106
    for op_type in configs['quantize_op_types']:
        assert (op_type in QUANT_DEQUANT_PASS_OP_TYPES) or (
            op_type in TRANSFORM_PASS_OP_TYPES), "{} is not support, \
                    now support op types are {}".format(
                op_type, TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES)

F
ftian 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    assert isinstance(configs['dtype'], str), \
        "dtype must be a str."

    assert (configs['dtype'] in VALID_DTYPES), \
        "dtype can only be " + " ".join(VALID_DTYPES)

    assert isinstance(configs['window_size'], int), \
        "window_size must be int value, window size for 'range_abs_max' quantization, default is 10000."

    assert isinstance(configs['moving_rate'], float), \
        "moving_rate must be float value, The decay coefficient of moving average, default is 0.9."

    assert isinstance(configs['quant_weight_only'], bool), \
        "quant_weight_only must be bool value, if set quant_weight_only True, " \
        "then only quantize parameters of layers which need to be quantized, " \
        " and activations will not be quantized."

    return configs


def quant_aware(program, place, config, scope=None, for_test=False):
    """
    add trainable quantization ops in program.
    Args:
        program(fluid.Program): program
        scope(fluid.Scope): the scope to store var, it's should be the value of program's scope, usually it's fluid.global_scope().
        place(fluid.CPUPlace or fluid.CUDAPlace): place
        config(dict): configs for quantization, default values are in quant_config_default dict.
        for_test: if program is test program, for_test should be set True, else False.
    Return:
        fluid.Program: user can finetune this quantization program to enhance the accuracy.
    """

    scope = fluid.global_scope() if not scope else scope
    assert isinstance(config, dict), "config must be dict"

    assert 'weight_quantize_type' in config.keys(
    ), 'weight_quantize_type must be configured'
    assert 'activation_quantize_type' in config.keys(
    ), 'activation_quantize_type must be configured'

    config = _parse_configs(config)
    main_graph = IrGraph(core.Graph(program.desc), for_test=for_test)

S
slf12 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    transform_pass_ops = []
    quant_dequant_ops = []
    for op_type in config['quantize_op_types']:
        if op_type in TRANSFORM_PASS_OP_TYPES:
            transform_pass_ops.append(op_type)
        elif op_type in QUANT_DEQUANT_PASS_OP_TYPES:
            quant_dequant_ops.append(op_type)
    if len(transform_pass_ops) > 0:
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            weight_bits=config['weight_bits'],
            activation_bits=config['activation_bits'],
            activation_quantize_type=config['activation_quantize_type'],
            weight_quantize_type=config['weight_quantize_type'],
            window_size=config['window_size'],
            moving_rate=config['moving_rate'],
            quantizable_op_type=transform_pass_ops,
            skip_pattern=config['not_quant_pattern'])

        transform_pass.apply(main_graph)

    if len(quant_dequant_ops) > 0:
        quant_dequant_pass = AddQuantDequantPass(
            scope=scope,
            place=place,
            moving_rate=config['moving_rate'],
            quant_bits=config['activation_bits'],
            skip_pattern=config['not_quant_pattern'],
            quantizable_op_type=quant_dequant_ops)
        quant_dequant_pass.apply(main_graph)
F
ftian 已提交
182 183 184 185 186 187 188 189

    if for_test:
        quant_program = main_graph.to_program()
    else:
        quant_program = fluid.CompiledProgram(main_graph.graph)
    return quant_program


S
slf12 已提交
190 191
def quant_post(executor,
               model_dir,
S
slf12 已提交
192
               quantize_model_path,
S
slf12 已提交
193 194 195 196
               sample_generator,
               model_filename=None,
               params_filename=None,
               batch_size=16,
S
slf12 已提交
197 198 199
               batch_nums=None,
               scope=None,
               algo='KL',
S
slf12 已提交
200
               quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"]):
F
ftian 已提交
201
    """
S
slf12 已提交
202
    The function utilizes post training quantization method to quantize the 
S
slf12 已提交
203 204 205 206
    fp32 model. It uses calibrate data to calculate the scale factor of 
    quantized variables, and inserts fake quant/dequant op to obtain the 
    quantized model.

F
ftian 已提交
207
    Args:
S
slf12 已提交
208 209
        executor(fluid.Executor): The executor to load, run and save the 
            quantized model.
S
slf12 已提交
210 211 212 213 214 215 216 217
        model_dir(str): The path of fp32 model that will be quantized, and 
            the model and params that saved by fluid.io.save_inference_model 
            are under the path.
        quantize_model_path(str): The path to save quantized model using api
            fluid.io.save_inference_model.
        sample_generator(Python Generator): The sample generator provides 
            calibrate data for DataLoader, and it only returns a sample every time.
        model_filename(str, optional): The name of model file to load the inference 
S
slf12 已提交
218
                program. If parameters are saved in separate files, 
S
slf12 已提交
219 220
                set it as 'None'. Default is 'None'.
        params_filename(str, optional): The name of params file to load all parameters.
S
slf12 已提交
221 222
                When all parameters are saved in a single file, set it 
                as filename. If parameters are saved in separate files, 
S
slf12 已提交
223 224
                set it as 'None'. Default is 'None'.
        batch_size(int, optional): The batch size of DataLoader, default is 16.
S
slf12 已提交
225
        batch_nums(int, optional): If set batch_nums, the number of calibrate 
S
slf12 已提交
226 227 228 229
                        data is 'batch_size*batch_nums'. If batch_nums is None, use all data
                        generated by sample_generator  as calibrate data.
        scope(fluid.Scope, optional): The scope to run program, use it to load 
                        and save variables. If scope is None, will use fluid.global_scope().
S
slf12 已提交
230 231
        algo(str, optional): If algo=KL, use KL-divergenc method to 
                        get the more precise scale factor. If algo='direct', use 
S
slf12 已提交
232 233
                        abs_max method to get the scale factor. Default is 'KL'.
        quantizable_op_type(list[str], optional): The list of op types
S
slf12 已提交
234
                        that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
S
slf12 已提交
235 236 237
                        "mul"].
    Returns:
        None
F
ftian 已提交
238
    """
S
slf12 已提交
239
    post_training_quantization = PostTrainingQuantization(
S
slf12 已提交
240 241 242 243 244 245 246 247 248 249 250
        executor=executor,
        sample_generator=sample_generator,
        model_dir=model_dir,
        model_filename=model_filename,
        params_filename=params_filename,
        batch_size=batch_size,
        batch_nums=batch_nums,
        scope=scope,
        algo=algo,
        quantizable_op_type=quantizable_op_type,
        is_full_quantize=False)
S
slf12 已提交
251 252
    post_training_quantization.quantize()
    post_training_quantization.save_quantized_model(quantize_model_path)
F
ftian 已提交
253 254


S
slf12 已提交
255
def convert(program, place, config, scope=None, save_int8=False):
F
ftian 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269
    """
    add quantization ops in program. the program returned is not trainable.
    Args:
        program(fluid.Program): program
        scope(fluid.Scope): the scope to store var, when is None will use fluid.global_scope()
        place(fluid.CPUPlace or fluid.CUDAPlace): place
        config(dict): configs for quantization, default values are in quant_config_default dict.
        save_int8: is export int8 freezed program.
    Return:
        fluid.Program: freezed program which can be used for inference.
                       parameters is float32 type, but it's value in int8 range.
        fluid.Program: freezed int8 program which can be used for inference.
                       if save_int8 is False, this value is None.
    """
S
slf12 已提交
270
    scope = fluid.global_scope() if not scope else scope
F
ftian 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    test_graph = IrGraph(core.Graph(program.desc), for_test=True)

    # Freeze the graph after training by adjusting the quantize
    # operators' order for the inference.
    freeze_pass = QuantizationFreezePass(
        scope=scope,
        place=place,
        weight_quantize_type=config['weight_quantize_type'])
    freeze_pass.apply(test_graph)
    freezed_program = test_graph.to_program()

    if save_int8:
        convert_int8_pass = ConvertToInt8Pass(
            scope=fluid.global_scope(), place=place)
        convert_int8_pass.apply(test_graph)
        freezed_program_int8 = test_graph.to_program()
        return freezed_program, freezed_program_int8
    else:
        return freezed_program