未验证 提交 bc14da69 编写于 作者: L Liufang Sang 提交者: GitHub

update quant_post api (#105)

上级 99bd3c36
......@@ -174,7 +174,7 @@ convert
quant_post
---------------
.. py:function:: paddleslim.quant.quant_post(executor, model_dir, quantize_model_path,sample_generator, model_filename=None, params_filename=None, batch_size=16,batch_nums=None, scope=None, algo='KL', quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"], is_full_quantize=False, is_use_cache_file=False, cache_dir="./temp_post_training")
.. py:function:: paddleslim.quant.quant_post(executor, model_dir, quantize_model_path,sample_generator, model_filename=None, params_filename=None, batch_size=16,batch_nums=None, scope=None, algo='KL', quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"], is_full_quantize=False, weight_bits=8, activation_bits=8, is_use_cache_file=False, cache_dir="./temp_post_training")
`源代码 <https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/quant/quanter.py>`_
......@@ -194,6 +194,8 @@ quant_post
- **algo(str)** - 量化时使用的算法名称,可为 ``'KL'`` 或者 ``'direct'`` 。该参数仅针对激活值的量化,因为参数值的量化使用的方式为 ``'channel_wise_abs_max'`` . 当 ``algo`` 设置为 ``'direct'`` 时,使用校正数据的激活值的绝对值的最大值当作 ``Scale`` 值,当设置为 ``'KL'`` 时,则使用KL散度的方法来计算 ``Scale`` 值。默认值为 ``'KL'`` 。
- **quantizable_op_type(list[str])** - 需要量化的 ``op`` 类型列表。默认值为 ``["conv2d", "depthwise_conv2d", "mul"]`` 。
- **is_full_quantize(bool)** - 是否量化所有可支持的op类型。如果设置为False, 则按照 ``'quantizable_op_type'`` 的设置进行量化。
- **weight_bits(int)** - weight的量化比特位数。
- **activation_bits(int)** - 激活值的量化比特位数。
- **is_use_cache_file(bool)** - 是否使用硬盘对中间结果进行存储。如果为False, 则将中间结果存储在内存中。
- **cache_dir(str)** - 如果 ``'is_use_cache_file'`` 为True, 则将中间结果存储在此参数设置的路径下。
......
......@@ -238,6 +238,8 @@ def quant_post(executor,
algo='KL',
quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
is_full_quantize=False,
weight_bits=8,
activation_bits=8,
is_use_cache_file=False,
cache_dir="./temp_post_training"):
"""
......@@ -274,6 +276,8 @@ def quant_post(executor,
quantizable_op_type(list[str], optional): The list of op types
that will be quantized. Default: ["conv2d", "depthwise_conv2d",
"mul"].
weight_bits(int, optional): quantization bit number for weights.
activation_bits(int): quantization bit number for activation.
is_full_quantize(bool): if True, apply quantization to all supported quantizable op type.
If False, only apply quantization to the input quantizable_op_type. Default is False.
is_use_cache_file(bool): If False, all temp data will be saved in memory. If True,
......@@ -295,6 +299,8 @@ def quant_post(executor,
algo=algo,
quantizable_op_type=quantizable_op_type,
is_full_quantize=is_full_quantize,
weight_bits=weight_bits,
activation_bits=activation_bits,
is_use_cache_file=is_use_cache_file,
cache_dir=cache_dir)
post_training_quantization.quantize()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册