test_sensitivity.py 3.3 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import numpy
import paddle
import paddle.fluid as fluid
Y
yukavio 已提交
20
from paddleslim.prune import sensitivity, merge_sensitive, load_sensitivities
W
wanghaoshuang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
from layers import conv_bn_layer


class TestSensitivity(unittest.TestCase):
    def test_sensitivity(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            input = fluid.data(name="image", shape=[None, 1, 28, 28])
            label = fluid.data(name="label", shape=[None, 1], dtype="int64")
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
            sum1 = conv1 + conv2
            conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
            conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
            sum2 = conv4 + sum1
            conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
            conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
            out = fluid.layers.fc(conv6, size=10, act='softmax')
            acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        eval_program = main_program.clone(for_test=True)

        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(startup_program)

47 48
        val_reader = paddle.fluid.io.batch(
            paddle.dataset.mnist.test(), batch_size=128)
W
wanghaoshuang 已提交
49

W
whs 已提交
50
        def eval_func(program):
W
wanghaoshuang 已提交
51 52 53 54 55 56 57 58 59 60 61 62
            feeder = fluid.DataFeeder(
                feed_list=['image', 'label'], place=place, program=program)
            acc_set = []
            for data in val_reader():
                acc_np = exe.run(program=program,
                                 feed=feeder.feed(data),
                                 fetch_list=[acc_top1])
                acc_set.append(float(acc_np[0]))
            acc_val_mean = numpy.array(acc_set).mean()
            print("acc_val_mean: {}".format(acc_val_mean))
            return acc_val_mean

Y
yukavio 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        sensitivity(
            eval_program,
            place, ["conv4_weights"],
            eval_func,
            "./sensitivities_file_0",
            pruned_ratios=[0.1, 0.2])

        sensitivity(
            eval_program,
            place, ["conv4_weights"],
            eval_func,
            "./sensitivities_file_1",
            pruned_ratios=[0.3, 0.4])

        sens_0 = load_sensitivities('./sensitivities_file_0')
        sens_1 = load_sensitivities('./sensitivities_file_1')
        sens = merge_sensitive([sens_0, sens_1])
        origin_sens = sensitivity(
            eval_program,
            place, ["conv4_weights"],
            eval_func,
            "./sensitivities_file_1",
            pruned_ratios=[0.1, 0.2, 0.3, 0.4])
        self.assertTrue(sens == origin_sens)
W
wanghaoshuang 已提交
87 88 89 90


if __name__ == '__main__':
    unittest.main()