# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import numpy import paddle import paddle.fluid as fluid from paddleslim.prune import sensitivity, merge_sensitive, load_sensitivities from layers import conv_bn_layer class TestSensitivity(unittest.TestCase): def test_sensitivity(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): input = fluid.data(name="image", shape=[None, 1, 28, 28]) label = fluid.data(name="label", shape=[None, 1], dtype="int64") conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_bn_layer(sum2, 8, 3, "conv5") conv6 = conv_bn_layer(conv5, 8, 3, "conv6") out = fluid.layers.fc(conv6, size=10, act='softmax') acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) eval_program = main_program.clone(for_test=True) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) val_reader = paddle.fluid.io.batch( paddle.dataset.mnist.test(), batch_size=128) def eval_func(program): feeder = fluid.DataFeeder( feed_list=['image', 'label'], place=place, program=program) acc_set = [] for data in val_reader(): acc_np = exe.run(program=program, feed=feeder.feed(data), fetch_list=[acc_top1]) acc_set.append(float(acc_np[0])) acc_val_mean = numpy.array(acc_set).mean() print("acc_val_mean: {}".format(acc_val_mean)) return acc_val_mean sensitivity( eval_program, place, ["conv4_weights"], eval_func, "./sensitivities_file_0", pruned_ratios=[0.1, 0.2]) sensitivity( eval_program, place, ["conv4_weights"], eval_func, "./sensitivities_file_1", pruned_ratios=[0.3, 0.4]) sens_0 = load_sensitivities('./sensitivities_file_0') sens_1 = load_sensitivities('./sensitivities_file_1') sens = merge_sensitive([sens_0, sens_1]) origin_sens = sensitivity( eval_program, place, ["conv4_weights"], eval_func, "./sensitivities_file_1", pruned_ratios=[0.1, 0.2, 0.3, 0.4]) self.assertTrue(sens == origin_sens) if __name__ == '__main__': unittest.main()