Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
8b0005bd
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8b0005bd
编写于
6月 12, 2020
作者:
W
whs
提交者:
GitHub
6月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix all the unittest of pruning. (#346)
上级
39ee8eb3
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
29 addition
and
114 deletion
+29
-114
paddleslim/prune/group_param.py
paddleslim/prune/group_param.py
+2
-1
tests/test_auto_prune.py
tests/test_auto_prune.py
+0
-84
tests/test_fpgm_prune.py
tests/test_fpgm_prune.py
+6
-6
tests/test_optimal_threshold.py
tests/test_optimal_threshold.py
+6
-6
tests/test_prune.py
tests/test_prune.py
+6
-6
tests/test_sensitivity.py
tests/test_sensitivity.py
+3
-5
tests/test_slim_prune.py
tests/test_slim_prune.py
+6
-6
未找到文件。
paddleslim/prune/group_param.py
浏览文件 @
8b0005bd
...
...
@@ -58,7 +58,8 @@ def collect_convs(params, graph, visited={}):
walker
=
conv2d_walker
(
conv_op
,
pruned_params
=
pruned_params
,
visited
=
visited
)
walker
.
prune
(
param
,
pruned_axis
=
0
,
pruned_idx
=
[
0
])
groups
.
append
(
pruned_params
)
if
len
(
pruned_params
)
>
0
:
groups
.
append
(
pruned_params
)
visited
=
set
()
uniq_groups
=
[]
for
group
in
groups
:
...
...
tests/test_auto_prune.py
已删除
100644 → 0
浏览文件 @
39ee8eb3
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
"../"
)
import
unittest
import
paddle.fluid
as
fluid
from
paddleslim.prune
import
AutoPruner
from
paddleslim.analysis
import
flops
from
layers
import
conv_bn_layer
class
TestPrune
(
unittest
.
TestCase
):
def
test_prune
(
self
):
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
# X X O X O
# conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
# | ^ | ^
# |____________| |____________________|
#
# X: prune output channels
# O: prune input channels
with
fluid
.
program_guard
(
main_program
,
startup_program
):
input
=
fluid
.
data
(
name
=
"image"
,
shape
=
[
None
,
3
,
16
,
16
])
conv1
=
conv_bn_layer
(
input
,
8
,
3
,
"conv1"
)
conv2
=
conv_bn_layer
(
conv1
,
8
,
3
,
"conv2"
)
sum1
=
conv1
+
conv2
conv3
=
conv_bn_layer
(
sum1
,
8
,
3
,
"conv3"
)
conv4
=
conv_bn_layer
(
conv3
,
8
,
3
,
"conv4"
)
sum2
=
conv4
+
sum1
conv5
=
conv_bn_layer
(
sum2
,
8
,
3
,
"conv5"
)
conv6
=
conv_bn_layer
(
conv5
,
8
,
3
,
"conv6"
)
shapes
=
{}
for
param
in
main_program
.
global_block
().
all_parameters
():
shapes
[
param
.
name
]
=
param
.
shape
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
Scope
()
exe
.
run
(
startup_program
,
scope
=
scope
)
pruned_flops
=
0.5
pruner
=
AutoPruner
(
main_program
,
scope
,
place
,
params
=
[
"conv4_weights"
],
init_ratios
=
[
0.5
],
pruned_flops
=
0.5
,
pruned_latency
=
None
,
server_addr
=
(
""
,
0
),
init_temperature
=
100
,
reduce_rate
=
0.85
,
max_try_number
=
300
,
max_client_num
=
10
,
search_steps
=
2
,
max_ratios
=
[
0.9
],
min_ratios
=
[
0
],
key
=
"auto_pruner"
)
base_flops
=
flops
(
main_program
)
program
=
pruner
.
prune
(
main_program
)
self
.
assertTrue
(
flops
(
program
)
<=
base_flops
*
(
1
-
pruned_flops
))
pruner
.
reward
(
1
)
program
=
pruner
.
prune
(
main_program
)
self
.
assertTrue
(
flops
(
program
)
<=
base_flops
*
(
1
-
pruned_flops
))
pruner
.
reward
(
1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
tests/test_fpgm_prune.py
浏览文件 @
8b0005bd
...
...
@@ -63,12 +63,12 @@ class TestPrune(unittest.TestCase):
param_shape_backup
=
None
)
shapes
=
{
"conv1_weights"
:
(
4
L
,
3L
,
3L
,
3L
),
"conv2_weights"
:
(
4
L
,
4L
,
3L
,
3L
),
"conv3_weights"
:
(
8
L
,
4L
,
3L
,
3L
),
"conv4_weights"
:
(
4
L
,
8L
,
3L
,
3L
),
"conv5_weights"
:
(
8
L
,
4L
,
3L
,
3L
),
"conv6_weights"
:
(
8
L
,
8L
,
3L
,
3L
)
"conv1_weights"
:
(
4
,
3
,
3
,
3
),
"conv2_weights"
:
(
4
,
4
,
3
,
3
),
"conv3_weights"
:
(
8
,
4
,
3
,
3
),
"conv4_weights"
:
(
4
,
8
,
3
,
3
),
"conv5_weights"
:
(
8
,
4
,
3
,
3
),
"conv6_weights"
:
(
8
,
8
,
3
,
3
)
}
for
param
in
main_program
.
global_block
().
all_parameters
():
...
...
tests/test_optimal_threshold.py
浏览文件 @
8b0005bd
...
...
@@ -64,12 +64,12 @@ class TestPrune(unittest.TestCase):
param_shape_backup
=
None
)
shapes
=
{
"conv1_weights"
:
(
4
L
,
3L
,
3L
,
3L
),
"conv2_weights"
:
(
4
L
,
4L
,
3L
,
3L
),
"conv3_weights"
:
(
8
L
,
4L
,
3L
,
3L
),
"conv4_weights"
:
(
4
L
,
8L
,
3L
,
3L
),
"conv5_weights"
:
(
8
L
,
4L
,
3L
,
3L
),
"conv6_weights"
:
(
8
L
,
8L
,
3L
,
3L
)
"conv1_weights"
:
(
4
,
3
,
3
,
3
),
"conv2_weights"
:
(
4
,
4
,
3
,
3
),
"conv3_weights"
:
(
8
,
4
,
3
,
3
),
"conv4_weights"
:
(
4
,
8
,
3
,
3
),
"conv5_weights"
:
(
8
,
4
,
3
,
3
),
"conv6_weights"
:
(
8
,
8
,
3
,
3
)
}
for
param
in
main_program
.
global_block
().
all_parameters
():
...
...
tests/test_prune.py
浏览文件 @
8b0005bd
...
...
@@ -62,12 +62,12 @@ class TestPrune(unittest.TestCase):
param_shape_backup
=
None
)
shapes
=
{
"conv1_weights"
:
(
4
L
,
3L
,
3L
,
3L
),
"conv2_weights"
:
(
4
L
,
4L
,
3L
,
3L
),
"conv3_weights"
:
(
8
L
,
4L
,
3L
,
3L
),
"conv4_weights"
:
(
4
L
,
8L
,
3L
,
3L
),
"conv5_weights"
:
(
8
L
,
4L
,
3L
,
3L
),
"conv6_weights"
:
(
8
L
,
8L
,
3L
,
3L
)
"conv1_weights"
:
(
4
,
3
,
3
,
3
),
"conv2_weights"
:
(
4
,
4
,
3
,
3
),
"conv3_weights"
:
(
8
,
4
,
3
,
3
),
"conv4_weights"
:
(
4
,
8
,
3
,
3
),
"conv5_weights"
:
(
8
,
4
,
3
,
3
),
"conv6_weights"
:
(
8
,
8
,
3
,
3
)
}
for
param
in
main_program
.
global_block
().
all_parameters
():
...
...
tests/test_sensitivity.py
浏览文件 @
8b0005bd
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
import
paddle
import
paddle.fluid
as
fluid
from
paddleslim.
analysis
import
sensitivity
from
paddleslim.
prune
import
sensitivity
from
layers
import
conv_bn_layer
...
...
@@ -47,13 +47,12 @@ class TestSensitivity(unittest.TestCase):
val_reader
=
paddle
.
fluid
.
io
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
128
)
def
eval_func
(
program
,
scope
):
def
eval_func
(
program
):
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
'image'
,
'label'
],
place
=
place
,
program
=
program
)
acc_set
=
[]
for
data
in
val_reader
():
acc_np
=
exe
.
run
(
program
=
program
,
scope
=
scope
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
acc_top1
])
acc_set
.
append
(
float
(
acc_np
[
0
]))
...
...
@@ -61,8 +60,7 @@ class TestSensitivity(unittest.TestCase):
print
(
"acc_val_mean: {}"
.
format
(
acc_val_mean
))
return
acc_val_mean
sensitivity
(
eval_program
,
fluid
.
global_scope
(),
place
,
[
"conv4_weights"
],
eval_func
,
sensitivity
(
eval_program
,
place
,
[
"conv4_weights"
],
eval_func
,
"./sensitivities_file"
)
...
...
tests/test_slim_prune.py
浏览文件 @
8b0005bd
...
...
@@ -63,12 +63,12 @@ class TestPrune(unittest.TestCase):
param_shape_backup
=
None
)
shapes
=
{
"conv1_weights"
:
(
4
L
,
3L
,
3L
,
3L
),
"conv2_weights"
:
(
4
L
,
4L
,
3L
,
3L
),
"conv3_weights"
:
(
8
L
,
4L
,
3L
,
3L
),
"conv4_weights"
:
(
4
L
,
8L
,
3L
,
3L
),
"conv5_weights"
:
(
8
L
,
4L
,
3L
,
3L
),
"conv6_weights"
:
(
8
L
,
8L
,
3L
,
3L
)
"conv1_weights"
:
(
4
,
3
,
3
,
3
),
"conv2_weights"
:
(
4
,
4
,
3
,
3
),
"conv3_weights"
:
(
8
,
4
,
3
,
3
),
"conv4_weights"
:
(
4
,
8
,
3
,
3
),
"conv5_weights"
:
(
8
,
4
,
3
,
3
),
"conv6_weights"
:
(
8
,
8
,
3
,
3
)
}
for
param
in
main_program
.
global_block
().
all_parameters
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录