test_sensitivity.py 2.7 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import numpy
import paddle
import paddle.fluid as fluid
from paddleslim.analysis import sensitivity
from layers import conv_bn_layer


class TestSensitivity(unittest.TestCase):
    def test_sensitivity(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            input = fluid.data(name="image", shape=[None, 1, 28, 28])
            label = fluid.data(name="label", shape=[None, 1], dtype="int64")
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
            sum1 = conv1 + conv2
            conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
            conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
            sum2 = conv4 + sum1
            conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
            conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
            out = fluid.layers.fc(conv6, size=10, act='softmax')
            acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        eval_program = main_program.clone(for_test=True)

        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(startup_program)

        val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)

        def eval_func(program, scope):
            feeder = fluid.DataFeeder(
                feed_list=['image', 'label'], place=place, program=program)
            acc_set = []
            for data in val_reader():
                acc_np = exe.run(program=program,
                                 scope=scope,
                                 feed=feeder.feed(data),
                                 fetch_list=[acc_top1])
                acc_set.append(float(acc_np[0]))
            acc_val_mean = numpy.array(acc_set).mean()
            print("acc_val_mean: {}".format(acc_val_mean))
            return acc_val_mean

        sensitivity(eval_program,
                    fluid.global_scope(), place, ["conv4_weights"], eval_func,
                    "./sensitivities_file")


if __name__ == '__main__':
    unittest.main()