ofa.py 29.5 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import numpy as np
from collections import namedtuple
import paddle
import paddle.fluid as fluid
C
ceci3 已提交
20
from .utils.utils import get_paddle_version, remove_model_fn
C
ceci3 已提交
21 22
pd_ver = get_paddle_version()
if pd_ver == 185:
23
    from .layers_old import SuperConv2D, SuperLinear
C
ceci3 已提交
24
    Layer = paddle.fluid.dygraph.Layer
25
    DataParallel = paddle.fluid.dygraph.DataParallel
C
ceci3 已提交
26
else:
27
    from .layers import SuperConv2D, SuperLinear
C
ceci3 已提交
28
    Layer = paddle.nn.Layer
29 30
    DataParallel = paddle.DataParallel
from .layers_base import BaseBlock
C
ceci3 已提交
31 32
from .utils.utils import search_idx
from ...common import get_logger
C
ceci3 已提交
33
from ...core import GraphWrapper, dygraph2program
C
ceci3 已提交
34
from .get_sub_model import get_prune_params_config, prune_params, check_search_space, broadcast_search_space
C
ceci3 已提交
35 36 37 38 39

_logger = get_logger(__name__, level=logging.INFO)

__all__ = ['OFA', 'RunConfig', 'DistillConfig']

C
ceci3 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53
RunConfig = namedtuple(
    'RunConfig',
    [
        # int, batch_size in training, used to get current epoch, default: None
        'train_batch_size',
        # list, the number of epoch of every task in training, default: None
        'n_epochs',
        # list, initial learning rate of every task in traning, NOT used now. Default: None.
        'init_learning_rate',
        # int, total images of train dataset, used to get current epoch, default: None
        'total_images',
        # list, elactic depth of the model in training, default: None
        'elastic_depth',
        # list, the number of sub-network to train per mini-batch data, used to get current epoch, default: None
C
ceci3 已提交
54 55 56
        'dynamic_batch_size',
        # the shape of weights in the skip_layers will not change in the training, default: None
        'skip_layers'
C
ceci3 已提交
57
    ])
C
ceci3 已提交
58 59
RunConfig.__new__.__defaults__ = (None, ) * len(RunConfig._fields)

C
ceci3 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
DistillConfig = namedtuple(
    'DistillConfig',
    [
        # float, lambda scale of distillation loss, default: None.
        'lambda_distill',
        # instance of model, instance of teacher model, default: None.
        'teacher_model',
        # list(str), name of the layers which need a distillation, default: None.
        'mapping_layers',
        # str, the path of teacher pretrained model, default: None.
        'teacher_model_path',
        # instance of loss layer, the loss function used in distillation, if set to None, use mse_loss default, default: None.
        'distill_fn',
        # str, define which op append between teacher model and student model used in distillation, choice in ['conv', 'linear', None], default: None.
        'mapping_op'
    ])
C
ceci3 已提交
76 77 78
DistillConfig.__new__.__defaults__ = (None, ) * len(DistillConfig._fields)


C
ceci3 已提交
79
class OFABase(Layer):
C
ceci3 已提交
80 81 82
    def __init__(self, model):
        super(OFABase, self).__init__()
        self.model = model
83 84
        self._ofa_layers, self._elastic_task, self._key2name, self._layers = self.get_layers(
        )
C
ceci3 已提交
85 86

    def get_layers(self):
87
        ofa_layers = dict()
C
ceci3 已提交
88
        layers = dict()
89
        key2name = dict()
C
ceci3 已提交
90
        elastic_task = set()
91 92 93
        model_to_traverse = self.model._layers if isinstance(
            self.model, DataParallel) else self.model
        for name, sublayer in model_to_traverse.named_sublayers():
C
ceci3 已提交
94 95
            if isinstance(sublayer, BaseBlock):
                sublayer.set_supernet(self)
C
ceci3 已提交
96
                if not sublayer.fixed:
97
                    ofa_layers[name] = sublayer.candidate_config
C
ceci3 已提交
98
                    layers[sublayer.key] = sublayer.candidate_config
99
                    key2name[sublayer.key] = name
C
ceci3 已提交
100 101
                    for k in sublayer.candidate_config.keys():
                        elastic_task.add(k)
102
        return ofa_layers, elastic_task, key2name, layers
C
ceci3 已提交
103 104 105 106 107 108

    def forward(self, *inputs, **kwargs):
        raise NotImplementedError

    def layers_forward(self, block, *inputs, **kwargs):
        if getattr(self, 'current_config', None) != None:
C
ceci3 已提交
109 110
            ### if block is fixed, donnot join key into candidate
            ### concrete config as parameter in kwargs
C
ceci3 已提交
111 112 113 114
            if block.fixed == False and (
                    self._skip_layers != None and
                    self._key2name[block.key] not in self._skip_layers) and  \
                    (block.fn.weight.name not in self._depthwise_conv):
115 116 117 118 119
                assert self._key2name[
                    block.
                    key] in self.current_config, 'DONNT have {} layer in config.'.format(
                        self._key2name[block.key])
                config = self.current_config[self._key2name[block.key]]
C
ceci3 已提交
120 121 122
            else:
                config = dict()
                config.update(kwargs)
C
ceci3 已提交
123 124
        else:
            config = dict()
C
ceci3 已提交
125
        _logger.debug(self.model, config)
C
ceci3 已提交
126 127 128

        return block.fn(*inputs, **config)

129 130 131 132
    @property
    def ofa_layers(self):
        return self._ofa_layers

C
ceci3 已提交
133 134 135 136 137 138
    @property
    def layers(self):
        return self._layers


class OFA(OFABase):
C
ceci3 已提交
139 140 141 142 143 144 145 146 147 148 149 150
    """
    Convert the training progress to the Once-For-All training progress, a detailed description in the paper: `Once-for-All: Train One Network and Specialize it for Efficient Deployment<https://arxiv.org/abs/1908.09791>`_ . This paper propose a training propgress named progressive shrinking (PS), which means we start with training the largest neural network with the maximum kernel size (i.e., 7), depth (i.e., 4), and width (i.e., 6). Next, we progressively fine-tune the network to support smaller sub-networks by gradually adding them into the sampling space (larger sub-networks may also be sampled). Specifically, after training the largest network, we first support elastic kernel size which can choose from {3, 5, 7} at each layer, while the depth and width remain the maximum values. Then, we support elastic depth and elastic width sequentially. 

    Parameters:
        model(paddle.nn.Layer): instance of model.
        run_config(paddleslim.ofa.RunConfig, optional): config in ofa training, can reference `<>`_ . Default: None.
        distill_config(paddleslim.ofa.DistillConfig, optional): config of distilltion in ofa training, can reference `<>`_. Default: None.
        elastic_order(list, optional): define the training order, if it set to None, use the default order in the paper. Default: None.
        train_full(bool, optional): whether to train the largest sub-network only. Default: False.

    Examples:
        .. code-block:: python
C
ceci3 已提交
151 152 153 154 155 156 157 158
          from paddle.vision.models import mobilenet_v1
          from paddleslim.nas.ofa import OFA
          from paddleslim.nas.ofa.convert_super import Convert, supernet

          model = mobilenet_v1()
          sp_net_config = supernet(kernel_size=(3, 5, 7), expand_ratio=[1, 2, 4])
          sp_model = Convert(sp_net_config).convert(model)
          ofa_model = OFA(sp_model)
C
ceci3 已提交
159 160
    """

C
ceci3 已提交
161 162
    def __init__(self,
                 model,
C
ceci3 已提交
163
                 run_config=None,
C
ceci3 已提交
164 165 166 167
                 distill_config=None,
                 elastic_order=None,
                 train_full=False):
        super(OFA, self).__init__(model)
C
ceci3 已提交
168
        self.net_config = None
C
ceci3 已提交
169 170 171 172 173 174 175 176 177 178
        self.run_config = run_config
        self.distill_config = distill_config
        self.elastic_order = elastic_order
        self.train_full = train_full
        self.iter = 0
        self.dynamic_iter = 0
        self.manual_set_task = False
        self.task_idx = 0
        self._add_teacher = False
        self.netAs_param = []
179 180 181
        self._mapping_layers = None
        self._build_ss = False
        self._broadcast = False
C
ceci3 已提交
182
        self._skip_layers = None
C
ceci3 已提交
183 184 185 186 187 188

        ### if elastic_order is none, use default order
        if self.elastic_order is not None:
            assert isinstance(self.elastic_order,
                              list), 'elastic_order must be a list'

C
ceci3 已提交
189 190 191
            if getattr(self.run_config, 'elastic_depth', None) != None:
                depth_list = list(set(self.run_config.elastic_depth))
                depth_list.sort()
192
                self._ofa_layers['depth'] = depth_list
C
ceci3 已提交
193
                self._layers['depth'] = depth_list
C
ceci3 已提交
194

C
ceci3 已提交
195 196 197 198 199 200 201 202 203 204 205
        if self.elastic_order is None:
            self.elastic_order = []
            # zero, elastic resulotion, write in demo
            # first, elastic kernel size
            if 'kernel_size' in self._elastic_task:
                self.elastic_order.append('kernel_size')

            # second, elastic depth, such as: list(2, 3, 4)
            if getattr(self.run_config, 'elastic_depth', None) != None:
                depth_list = list(set(self.run_config.elastic_depth))
                depth_list.sort()
206
                self._ofa_layers['depth'] = depth_list
C
ceci3 已提交
207
                self._layers['depth'] = depth_list
C
ceci3 已提交
208 209 210 211 212 213 214 215 216
                self.elastic_order.append('depth')

            # final, elastic width
            if 'expand_ratio' in self._elastic_task:
                self.elastic_order.append('width')

            if 'channel' in self._elastic_task and 'width' not in self.elastic_order:
                self.elastic_order.append('width')

C
ceci3 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        if getattr(self.run_config, 'n_epochs', None) != None:
            assert len(self.run_config.n_epochs) == len(self.elastic_order)
            for idx in range(len(run_config.n_epochs)):
                assert isinstance(
                    run_config.n_epochs[idx],
                    list), "each candidate in n_epochs must be list"

            if self.run_config.dynamic_batch_size != None:
                assert len(self.run_config.n_epochs) == len(
                    self.run_config.dynamic_batch_size)
            if self.run_config.init_learning_rate != None:
                assert len(self.run_config.n_epochs) == len(
                    self.run_config.init_learning_rate)
                for idx in range(len(run_config.n_epochs)):
                    assert isinstance(
                        run_config.init_learning_rate[idx], list
                    ), "each candidate in init_learning_rate must be list"
C
ceci3 已提交
234

C
ceci3 已提交
235 236 237 238 239
        ### remove skip layers in search space
        if self.run_config != None and getattr(self.run_config, 'skip_layers',
                                               None) != None:
            self._skip_layers = self.run_config.skip_layers

C
ceci3 已提交
240
        ### =================  add distill prepare ======================
C
ceci3 已提交
241
        if self.distill_config != None:
C
ceci3 已提交
242 243 244 245 246 247 248
            self._add_teacher = True
            self._prepare_distill()

        self.model.train()

    def _prepare_distill(self):
        if self.distill_config.teacher_model == None:
C
ceci3 已提交
249
            _logger.error(
C
ceci3 已提交
250
                'If you want to add distill, please input instance of teacher model'
C
ceci3 已提交
251 252
            )

C
ceci3 已提交
253
        ### instance model by user can input super-param easily.
C
ceci3 已提交
254
        assert isinstance(self.distill_config.teacher_model, Layer)
C
ceci3 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267

        # load teacher parameter
        if self.distill_config.teacher_model_path != None:
            param_state_dict, _ = paddle.load_dygraph(
                self.distill_config.teacher_model_path)
            self.distill_config.teacher_model.set_dict(param_state_dict)

        self.ofa_teacher_model = OFABase(self.distill_config.teacher_model)
        self.ofa_teacher_model.model.eval()

        # add hook if mapping layers is not None
        # if mapping layer is None, return the output of the teacher model,
        # if mapping layer is NOT None, add hook and compute distill loss about mapping layers.
C
ceci3 已提交
268
        mapping_layers = getattr(self.distill_config, 'mapping_layers', None)
C
ceci3 已提交
269
        if mapping_layers != None:
270 271 272 273 274
            if isinstance(self.model, DataParallel):
                for idx, name in enumerate(mapping_layers):
                    if name[:7] != '_layers':
                        mapping_layers[idx] = '_layers.' + name
            self._mapping_layers = mapping_layers
C
ceci3 已提交
275 276
            self.netAs = []
            for name, sublayer in self.model.named_sublayers():
277
                if name in self._mapping_layers:
C
ceci3 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
                    if self.distill_config.mapping_op != None:
                        if self.distill_config.mapping_op.lower() == 'conv2d':
                            netA = SuperConv2D(
                                getattr(sublayer, '_num_filters',
                                        sublayer._out_channels),
                                getattr(sublayer, '_num_filters',
                                        sublayer._out_channels), 1)
                        elif self.distill_config.mapping_op.lower() == 'linear':
                            netA = SuperLinear(
                                getattr(sublayer, '_output_dim',
                                        sublayer._out_features),
                                getattr(sublayer, '_output_dim',
                                        sublayer._out_features))
                        else:
                            raise NotImplementedError(
                                "Not Support Op: {}".format(
                                    self.distill_config.mapping_op.lower()))
                    else:
                        netA = None

                    if netA != None:
                        self.netAs_param.extend(netA.parameters())
C
ceci3 已提交
300 301
                    self.netAs.append(netA)

C
ceci3 已提交
302 303
    def _reset_hook_before_forward(self):
        self.Tacts, self.Sacts = {}, {}
C
ceci3 已提交
304
        self.hooks = []
305
        if self._mapping_layers != None:
C
ceci3 已提交
306

C
ceci3 已提交
307 308 309 310 311 312 313 314 315
            def get_activation(mem, name):
                def get_output_hook(layer, input, output):
                    mem[name] = output

                return get_output_hook

            def add_hook(net, mem, mapping_layers):
                for idx, (n, m) in enumerate(net.named_sublayers()):
                    if n in mapping_layers:
C
ceci3 已提交
316 317 318
                        self.hooks.append(
                            m.register_forward_post_hook(
                                get_activation(mem, n)))
C
ceci3 已提交
319

320 321 322
            add_hook(self.model, self.Sacts, self._mapping_layers)
            add_hook(self.ofa_teacher_model.model, self.Tacts,
                     self._mapping_layers)
C
ceci3 已提交
323

C
ceci3 已提交
324 325 326 327
    def _remove_hook_after_forward(self):
        for hook in self.hooks:
            hook.remove()

C
ceci3 已提交
328 329
    def _compute_epochs(self):
        if getattr(self, 'epoch', None) == None:
C
ceci3 已提交
330 331 332 333 334 335 336
            assert self.run_config.total_images is not None, \
                "if not use set_epoch() to set epoch, please set total_images in run_config."
            assert self.run_config.train_batch_size is not None, \
                "if not use set_epoch() to set epoch, please set train_batch_size in run_config."
            assert self.run_config.n_epochs is not None, \
                "if not use set_epoch() to set epoch, please set n_epochs in run_config."
            self.iter_per_epochs = self.run_config.total_images // self.run_config.train_batch_size
C
ceci3 已提交
337 338
            epoch = self.iter // self.iter_per_epochs
        else:
C
ceci3 已提交
339
            epoch = self.epoch
C
ceci3 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
        return epoch

    def _sample_from_nestdict(self, cands, sample_type, task, phase):
        sample_cands = dict()
        for k, v in cands.items():
            if isinstance(v, dict):
                sample_cands[k] = self._sample_from_nestdict(
                    v, sample_type=sample_type, task=task, phase=phase)
            elif isinstance(v, list) or isinstance(v, set) or isinstance(v,
                                                                         tuple):
                if sample_type == 'largest':
                    sample_cands[k] = v[-1]
                elif sample_type == 'smallest':
                    sample_cands[k] = v[0]
                else:
                    if k not in task:
                        # sort and deduplication in candidate_config
                        # fixed candidate not in task_list
                        sample_cands[k] = v[-1]
                    else:
                        # phase == None -> all candidate; phase == number, append small candidate in each phase
                        # phase only affect last task in current task_list
                        if phase != None and k == task[-1]:
                            start = -(phase + 2)
                        else:
                            start = 0
                        sample_cands[k] = np.random.choice(v[start:])

        return sample_cands

    def _sample_config(self, task, sample_type='random', phase=None):
        config = self._sample_from_nestdict(
372
            self._ofa_layers, sample_type=sample_type, task=task, phase=phase)
C
ceci3 已提交
373 374
        return config

C
ceci3 已提交
375 376 377 378 379 380 381 382 383 384
    def set_task(self, task, phase=None):
        """
        set task in the ofa training progress.
        Parameters:
            task(list(str)|str): spectial task in training progress.
            phase(int, optional): the search space is gradually increased, use this parameter to spectial the phase in current task, if set to None, means use the whole search space in training progress. Default: None.
        Examples:
            .. code-block:: python
              ofa_model.set_task('width')
        """
C
ceci3 已提交
385 386 387 388 389
        self.manual_set_task = True
        self.task = task
        self.phase = phase

    def set_epoch(self, epoch):
C
ceci3 已提交
390 391 392 393 394 395 396 397
        """
        set epoch in the ofa training progress.
        Parameters:
            epoch(int): spectial epoch in training progress.
        Examples:
            .. code-block:: python
              ofa_model.set_epoch(3)
        """
C
ceci3 已提交
398 399 400 401
        self.epoch = epoch

    def _progressive_shrinking(self):
        epoch = self._compute_epochs()
402 403 404 405 406 407 408
        phase_idx = None
        if len(self.elastic_order) != 1:
            assert self.run_config.n_epochs is not None, \
                "if not use set_task() to set current task, please set n_epochs in run_config " \
                "for to compute which task in this epoch."
            self.task_idx, phase_idx = search_idx(epoch,
                                                  self.run_config.n_epochs)
C
ceci3 已提交
409 410 411 412 413 414 415 416 417 418 419
        self.task = self.elastic_order[:self.task_idx + 1]
        if 'width' in self.task:
            ### change width in task to concrete config
            self.task.remove('width')
            if 'expand_ratio' in self._elastic_task:
                self.task.append('expand_ratio')
            if 'channel' in self._elastic_task:
                self.task.append('channel')
        return self._sample_config(task=self.task, phase=phase_idx)

    def calc_distill_loss(self):
C
ceci3 已提交
420 421 422 423 424 425
        """
        Calculate distill loss if there are distillation.
        Examples:
            .. code-block:: python
              dis_loss = ofa_model.calc_distill_loss()
        """
C
ceci3 已提交
426 427 428 429
        losses = []
        assert len(self.netAs) > 0
        for i, netA in enumerate(self.netAs):
            n = self.distill_config.mapping_layers[i]
C
ceci3 已提交
430 431 432
            ### add for elastic depth
            if n not in self.Sacts.keys():
                continue
C
ceci3 已提交
433 434
            Tact = self.Tacts[n]
            Sact = self.Sacts[n]
C
ceci3 已提交
435 436 437 438 439 440 441 442 443 444 445
            if isinstance(netA, SuperConv2D):
                Sact = netA(
                    Sact,
                    channel=getattr(netA, '_num_filters', netA._out_channels))
            elif isinstance(netA, SuperLinear):
                Sact = netA(
                    Sact,
                    channel=getattr(netA, '_output_dim', netA._out_features))
            else:
                Sact = Sact

C
ceci3 已提交
446 447
            Sact = Sact[0] if isinstance(Sact, tuple) else Sact
            Tact = Tact[0] if isinstance(Tact, tuple) else Tact
C
ceci3 已提交
448
            if self.distill_config.distill_fn == None:
C
ceci3 已提交
449
                loss = fluid.layers.mse_loss(Sact, Tact.detach())
C
ceci3 已提交
450
            else:
C
ceci3 已提交
451
                loss = distill_fn(Sact, Tact.detach())
C
ceci3 已提交
452
            losses.append(loss)
453 454 455
        if self.distill_config.lambda_distill != None:
            return sum(losses) * self.distill_config.lambda_distill
        return sum(losses)
C
ceci3 已提交
456 457 458 459 460

    ### TODO: complete it
    def search(self, eval_func, condition):
        pass

C
ceci3 已提交
461 462
    def _export_sub_model_config(self, origin_model, config, input_shapes,
                                 input_dtypes):
C
ceci3 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
        param2name = {}
        for name, sublayer in origin_model.named_sublayers():
            for param in sublayer.parameters(include_sublayers=False):
                if name.split('.')[-1] == 'fn':
                    ### if sublayer is Block, the name of the param.name has 'fn', the config always donnot have 'fn'
                    param2name[param.name] = name[:-3]
                else:
                    param2name[param.name] = name

        program = dygraph2program(
            origin_model, inputs=input_shapes, dtypes=input_dtypes)
        graph = GraphWrapper(program)

        same_config, _ = check_search_space(graph)
        if same_config != None:
            broadcast_search_space(same_config, param2name, config)

C
ceci3 已提交
480 481
        origin_model_config = {}
        for name, sublayer in origin_model.named_sublayers():
482 483
            if isinstance(sublayer, BaseBlock):
                sublayer = sublayer.fn
C
ceci3 已提交
484
            for param in sublayer.parameters(include_sublayers=False):
485 486
                if name in config.keys():
                    origin_model_config[param.name] = config[name]
C
ceci3 已提交
487 488 489 490 491 492 493 494

        param_prune_config = get_prune_params_config(graph, origin_model_config)
        return param_prune_config

    def export(self,
               config,
               input_shapes,
               input_dtypes,
495
               origin_model=None,
C
ceci3 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
               load_weights_from_supernet=True):
        """
        Export the weights according origin model and sub model config.
        Parameters:
            origin_model(paddle.nn.Layer): the instance of original model.
            config(dict): the config of sub model, can get by OFA.get_current_config() or some special config, such as paddleslim.nas.ofa.utils.dynabert_config(width_mult).
            input_shapes(list|list(list)): the shape of all inputs.
            input_dtypes(list): the dtype of all inputs.
            load_weights_from_supernet(bool, optional): whether to load weights from SuperNet. Default: False.
        Examples:
            .. code-block:: python
              from paddle.vision.models import mobilenet_v1
              origin_model = mobilenet_v1()
              config = {'conv2d_0': {'expand_ratio': 2}, 'conv2d_1': {'expand_ratio': 2}}
              origin_model = ofa_model.export(origin_model, config, input_shapes=[1, 3, 28, 28], input_dtypes=['float32'])
        """
        super_sd = None
513
        if load_weights_from_supernet and origin_model != None:
C
ceci3 已提交
514 515
            super_sd = remove_model_fn(origin_model, self.model.state_dict())

516 517 518 519
        if origin_model == None:
            origin_model = self.model
        origin_model = origin_model._layers if isinstance(
            origin_model, DataParallel) else origin_model
C
ceci3 已提交
520 521 522 523 524 525 526 527
        param_config = self._export_sub_model_config(origin_model, config,
                                                     input_shapes, input_dtypes)
        prune_params(origin_model, param_config, super_sd)
        return origin_model

    @property
    def get_current_config(self):
        return self.current_config
C
ceci3 已提交
528

C
ceci3 已提交
529
    def set_net_config(self, net_config):
C
ceci3 已提交
530 531 532 533 534 535
        """
        Set the config of the special sub-network to be trained.
        Parameters:
            net_config(dict): special the config of sug-network.
        Examples:
            .. code-block:: python
C
ceci3 已提交
536
              config = {'conv2d_0': {'expand_ratio': 2}, 'conv2d_1': {'expand_ratio': 2}}
C
ceci3 已提交
537 538
              ofa_model.set_net_config(config)
        """
C
ceci3 已提交
539 540
        self.net_config = net_config

541 542 543 544 545 546 547 548 549 550 551 552 553 554
    def _find_ele(self, inp, targets):
        def _roll_eles(target_list, types=(list, set, tuple)):
            if isinstance(target_list, types):
                for targ in target_list:
                    for v in _roll_eles(targ, types):
                        yield v
            else:
                yield target_list

        if inp in list(_roll_eles(targets)):
            return True
        else:
            return False

C
ceci3 已提交
555 556 557 558 559 560 561 562
    def _clear_width(self, key):
        if 'expand_ratio' in self._ofa_layers[key]:
            self._ofa_layers[key].pop('expand_ratio')
        elif 'channel' in self._ofa_layers[key]:
            self._ofa_layers[key].pop('channel')
        if len(self._ofa_layers[key]) == 0:
            self._ofa_layers.pop(key)

563 564 565 566 567 568 569 570 571 572 573 574
    def _clear_search_space(self, *inputs, **kwargs):
        """ find shortcut in model, and clear up the search space """
        input_shapes = []
        input_dtypes = []
        for n in inputs:
            input_shapes.append(n.shape)
            input_dtypes.append(n.numpy().dtype)
        for n, v in kwargs.items():
            input_shapes.append(v.shape)
            input_dtypes.append(v.numpy().dtype)

        ### find shortcut block using static model
C
ceci3 已提交
575 576
        model_to_traverse = self.model._layers if isinstance(
            self.model, DataParallel) else self.model
577
        _st_prog = dygraph2program(
C
ceci3 已提交
578 579 580
            model_to_traverse, inputs=input_shapes, dtypes=input_dtypes)
        self._same_ss, self._depthwise_conv = check_search_space(
            GraphWrapper(_st_prog))
581 582 583 584 585 586 587 588 589 590 591 592 593

        if self._same_ss != None:
            self._param2key = {}
            self._broadcast = True

            ### the name of sublayer is the key in search space
            ### param.name is the name in self._same_ss
            for name, sublayer in model_to_traverse.named_sublayers():
                if isinstance(sublayer, BaseBlock):
                    for param in sublayer.parameters():
                        if self._find_ele(param.name, self._same_ss):
                            self._param2key[param.name] = name

C
ceci3 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
            ### double clear same search space to avoid outputs weights in same ss.
            tmp_same_ss = []
            for ss in self._same_ss:
                per_ss = []
                for key in ss:
                    if key not in self._param2key.keys():
                        continue

                    ### if skip_layers and same ss both have same layer, 
                    ### the layers related to this layer need to add to skip_layers 
                    if self._skip_layers != None and self._param2key[
                            key] in self._skip_layers:
                        self._skip_layers += [self._param2key[sk] for sk in ss]
                        per_ss = []
                        break

                    if self._param2key[key] in self._ofa_layers.keys() and \
                       ('expand_ratio' in self._ofa_layers[self._param2key[key]] or \
                       'channel' in self._ofa_layers[self._param2key[key]]):
                        per_ss.append(key)
                    else:
                        _logger.info("{} not in ss".format(key))
                if len(per_ss) != 0:
                    tmp_same_ss.append(per_ss)

            self._same_ss = tmp_same_ss

            ### clear layer in ofa_layers set by skip layers
            if self._skip_layers != None:
                for skip_layer in self._skip_layers:
                    if skip_layer in self._ofa_layers.keys():
                        self._ofa_layers.pop(skip_layer)

627 628
            for per_ss in self._same_ss:
                for ss in per_ss[1:]:
C
ceci3 已提交
629 630 631 632 633 634 635 636 637
                    self._clear_width(self._param2key[ss])

            ### clear depthwise conv from search space because of its output channel cannot change
            for name, sublayer in model_to_traverse.named_sublayers():
                if isinstance(sublayer, BaseBlock):
                    for param in sublayer.parameters():
                        if param.name in self._depthwise_conv and name in self._ofa_layers.keys(
                        ):
                            self._clear_width(name)
638

C
ceci3 已提交
639 640 641 642
    def forward(self, *inputs, **kwargs):
        # =====================  teacher process  =====================
        teacher_output = None
        if self._add_teacher:
C
ceci3 已提交
643
            self._reset_hook_before_forward()
C
ceci3 已提交
644 645 646 647 648
            teacher_output = self.ofa_teacher_model.model.forward(*inputs,
                                                                  **kwargs)
        # ============================================================

        # ====================   student process  =====================
649 650 651 652
        if not self._build_ss and self.net_config == None:
            self._clear_search_space(*inputs, **kwargs)
            self._build_ss = True

C
ceci3 已提交
653 654 655 656 657 658
        if getattr(self.run_config, 'dynamic_batch_size', None) != None:
            self.dynamic_iter += 1
            if self.dynamic_iter == self.run_config.dynamic_batch_size[
                    self.task_idx]:
                self.iter += 1
                self.dynamic_iter = 0
C
ceci3 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

        if self.net_config == None:
            if self.train_full == True:
                self.current_config = self._sample_config(
                    task=None, sample_type='largest')
            else:
                if self.manual_set_task == False:
                    self.current_config = self._progressive_shrinking()
                else:
                    self.current_config = self._sample_config(
                        self.task, phase=self.phase)
        else:
            self.current_config = self.net_config

        _logger.debug("Current config is {}".format(self.current_config))
        if 'depth' in self.current_config:
C
ceci3 已提交
675
            kwargs['depth'] = self.current_config['depth']
C
ceci3 已提交
676

677
        if self._broadcast:
C
ceci3 已提交
678 679
            broadcast_search_space(self._same_ss, self._param2key,
                                   self.current_config)
680

C
ceci3 已提交
681 682 683 684 685 686
        student_output = self.model.forward(*inputs, **kwargs)

        if self._add_teacher:
            self._remove_hook_after_forward()

        return student_output, teacher_output