ofa.py 19.0 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import numpy as np
from collections import namedtuple
import paddle
import paddle.fluid as fluid
C
ceci3 已提交
20 21 22
from .utils.utils import get_paddle_version
pd_ver = get_paddle_version()
if pd_ver == 185:
C
ceci3 已提交
23
    from .layers_old import BaseBlock, SuperConv2D, SuperLinear
C
ceci3 已提交
24 25
    Layer = paddle.fluid.dygraph.Layer
else:
C
ceci3 已提交
26
    from .layers import BaseBlock, SuperConv2D, SuperLinear
C
ceci3 已提交
27
    Layer = paddle.nn.Layer
C
ceci3 已提交
28 29 30 31 32 33 34
from .utils.utils import search_idx
from ...common import get_logger

_logger = get_logger(__name__, level=logging.INFO)

__all__ = ['OFA', 'RunConfig', 'DistillConfig']

C
ceci3 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
RunConfig = namedtuple(
    'RunConfig',
    [
        # int, batch_size in training, used to get current epoch, default: None
        'train_batch_size',
        # list, the number of epoch of every task in training, default: None
        'n_epochs',
        # list, initial learning rate of every task in traning, NOT used now. Default: None.
        'init_learning_rate',
        # int, total images of train dataset, used to get current epoch, default: None
        'total_images',
        # list, elactic depth of the model in training, default: None
        'elastic_depth',
        # list, the number of sub-network to train per mini-batch data, used to get current epoch, default: None
        'dynamic_batch_size'
    ])
C
ceci3 已提交
51 52
RunConfig.__new__.__defaults__ = (None, ) * len(RunConfig._fields)

C
ceci3 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
DistillConfig = namedtuple(
    'DistillConfig',
    [
        # float, lambda scale of distillation loss, default: None.
        'lambda_distill',
        # instance of model, instance of teacher model, default: None.
        'teacher_model',
        # list(str), name of the layers which need a distillation, default: None.
        'mapping_layers',
        # str, the path of teacher pretrained model, default: None.
        'teacher_model_path',
        # instance of loss layer, the loss function used in distillation, if set to None, use mse_loss default, default: None.
        'distill_fn',
        # str, define which op append between teacher model and student model used in distillation, choice in ['conv', 'linear', None], default: None.
        'mapping_op'
    ])
C
ceci3 已提交
69 70 71
DistillConfig.__new__.__defaults__ = (None, ) * len(DistillConfig._fields)


C
ceci3 已提交
72
class OFABase(Layer):
C
ceci3 已提交
73 74 75 76 77 78 79 80 81 82 83
    def __init__(self, model):
        super(OFABase, self).__init__()
        self.model = model
        self._layers, self._elastic_task = self.get_layers()

    def get_layers(self):
        layers = dict()
        elastic_task = set()
        for name, sublayer in self.model.named_sublayers():
            if isinstance(sublayer, BaseBlock):
                sublayer.set_supernet(self)
C
ceci3 已提交
84 85 86 87
                if not sublayer.fixed:
                    layers[sublayer.key] = sublayer.candidate_config
                    for k in sublayer.candidate_config.keys():
                        elastic_task.add(k)
C
ceci3 已提交
88 89 90 91 92 93 94
        return layers, elastic_task

    def forward(self, *inputs, **kwargs):
        raise NotImplementedError

    def layers_forward(self, block, *inputs, **kwargs):
        if getattr(self, 'current_config', None) != None:
C
ceci3 已提交
95 96 97 98 99 100 101 102 103
            ### if block is fixed, donnot join key into candidate
            ### concrete config as parameter in kwargs
            if block.fixed == False:
                assert block.key in self.current_config, 'DONNT have {} layer in config.'.format(
                    block.key)
                config = self.current_config[block.key]
            else:
                config = dict()
                config.update(kwargs)
C
ceci3 已提交
104 105 106 107 108 109 110 111 112 113 114 115
        else:
            config = dict()
        logging.debug(self.model, config)

        return block.fn(*inputs, **config)

    @property
    def layers(self):
        return self._layers


class OFA(OFABase):
C
ceci3 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    """
    Convert the training progress to the Once-For-All training progress, a detailed description in the paper: `Once-for-All: Train One Network and Specialize it for Efficient Deployment<https://arxiv.org/abs/1908.09791>`_ . This paper propose a training propgress named progressive shrinking (PS), which means we start with training the largest neural network with the maximum kernel size (i.e., 7), depth (i.e., 4), and width (i.e., 6). Next, we progressively fine-tune the network to support smaller sub-networks by gradually adding them into the sampling space (larger sub-networks may also be sampled). Specifically, after training the largest network, we first support elastic kernel size which can choose from {3, 5, 7} at each layer, while the depth and width remain the maximum values. Then, we support elastic depth and elastic width sequentially. 

    Parameters:
        model(paddle.nn.Layer): instance of model.
        run_config(paddleslim.ofa.RunConfig, optional): config in ofa training, can reference `<>`_ . Default: None.
        distill_config(paddleslim.ofa.DistillConfig, optional): config of distilltion in ofa training, can reference `<>`_. Default: None.
        elastic_order(list, optional): define the training order, if it set to None, use the default order in the paper. Default: None.
        train_full(bool, optional): whether to train the largest sub-network only. Default: False.

    Examples:
        .. code-block:: python
          from paddlslim.nas.ofa import OFA
          ofa_model = OFA(model)

    """

C
ceci3 已提交
133 134
    def __init__(self,
                 model,
C
ceci3 已提交
135
                 run_config=None,
C
ceci3 已提交
136 137 138 139
                 distill_config=None,
                 elastic_order=None,
                 train_full=False):
        super(OFA, self).__init__(model)
C
ceci3 已提交
140
        self.net_config = None
C
ceci3 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        self.run_config = run_config
        self.distill_config = distill_config
        self.elastic_order = elastic_order
        self.train_full = train_full
        self.iter = 0
        self.dynamic_iter = 0
        self.manual_set_task = False
        self.task_idx = 0
        self._add_teacher = False
        self.netAs_param = []

        ### if elastic_order is none, use default order
        if self.elastic_order is not None:
            assert isinstance(self.elastic_order,
                              list), 'elastic_order must be a list'

C
ceci3 已提交
157 158 159 160 161
            if getattr(self.run_config, 'elastic_depth', None) != None:
                depth_list = list(set(self.run_config.elastic_depth))
                depth_list.sort()
                self.layers['depth'] = depth_list

C
ceci3 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        if self.elastic_order is None:
            self.elastic_order = []
            # zero, elastic resulotion, write in demo
            # first, elastic kernel size
            if 'kernel_size' in self._elastic_task:
                self.elastic_order.append('kernel_size')

            # second, elastic depth, such as: list(2, 3, 4)
            if getattr(self.run_config, 'elastic_depth', None) != None:
                depth_list = list(set(self.run_config.elastic_depth))
                depth_list.sort()
                self.layers['depth'] = depth_list
                self.elastic_order.append('depth')

            # final, elastic width
            if 'expand_ratio' in self._elastic_task:
                self.elastic_order.append('width')

            if 'channel' in self._elastic_task and 'width' not in self.elastic_order:
                self.elastic_order.append('width')

C
ceci3 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        if getattr(self.run_config, 'n_epochs', None) != None:
            assert len(self.run_config.n_epochs) == len(self.elastic_order)
            for idx in range(len(run_config.n_epochs)):
                assert isinstance(
                    run_config.n_epochs[idx],
                    list), "each candidate in n_epochs must be list"

            if self.run_config.dynamic_batch_size != None:
                assert len(self.run_config.n_epochs) == len(
                    self.run_config.dynamic_batch_size)
            if self.run_config.init_learning_rate != None:
                assert len(self.run_config.n_epochs) == len(
                    self.run_config.init_learning_rate)
                for idx in range(len(run_config.n_epochs)):
                    assert isinstance(
                        run_config.init_learning_rate[idx], list
                    ), "each candidate in init_learning_rate must be list"
C
ceci3 已提交
200 201

        ### =================  add distill prepare ======================
C
ceci3 已提交
202
        if self.distill_config != None:
C
ceci3 已提交
203 204 205 206 207 208 209 210 211 212
            self._add_teacher = True
            self._prepare_distill()

        self.model.train()

    def _prepare_distill(self):
        self.Tacts, self.Sacts = {}, {}

        if self.distill_config.teacher_model == None:
            logging.error(
C
ceci3 已提交
213
                'If you want to add distill, please input instance of teacher model'
C
ceci3 已提交
214 215
            )

C
ceci3 已提交
216
        ### instance model by user can input super-param easily.
C
ceci3 已提交
217
        assert isinstance(self.distill_config.teacher_model, Layer)
C
ceci3 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230

        # load teacher parameter
        if self.distill_config.teacher_model_path != None:
            param_state_dict, _ = paddle.load_dygraph(
                self.distill_config.teacher_model_path)
            self.distill_config.teacher_model.set_dict(param_state_dict)

        self.ofa_teacher_model = OFABase(self.distill_config.teacher_model)
        self.ofa_teacher_model.model.eval()

        # add hook if mapping layers is not None
        # if mapping layer is None, return the output of the teacher model,
        # if mapping layer is NOT None, add hook and compute distill loss about mapping layers.
C
ceci3 已提交
231
        mapping_layers = getattr(self.distill_config, 'mapping_layers', None)
C
ceci3 已提交
232 233 234 235
        if mapping_layers != None:
            self.netAs = []
            for name, sublayer in self.model.named_sublayers():
                if name in mapping_layers:
C
ceci3 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                    if self.distill_config.mapping_op != None:
                        if self.distill_config.mapping_op.lower() == 'conv2d':
                            netA = SuperConv2D(
                                getattr(sublayer, '_num_filters',
                                        sublayer._out_channels),
                                getattr(sublayer, '_num_filters',
                                        sublayer._out_channels), 1)
                        elif self.distill_config.mapping_op.lower() == 'linear':
                            netA = SuperLinear(
                                getattr(sublayer, '_output_dim',
                                        sublayer._out_features),
                                getattr(sublayer, '_output_dim',
                                        sublayer._out_features))
                        else:
                            raise NotImplementedError(
                                "Not Support Op: {}".format(
                                    self.distill_config.mapping_op.lower()))
                    else:
                        netA = None

                    if netA != None:
                        self.netAs_param.extend(netA.parameters())
C
ceci3 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
                    self.netAs.append(netA)

            def get_activation(mem, name):
                def get_output_hook(layer, input, output):
                    mem[name] = output

                return get_output_hook

            def add_hook(net, mem, mapping_layers):
                for idx, (n, m) in enumerate(net.named_sublayers()):
                    if n in mapping_layers:
                        m.register_forward_post_hook(get_activation(mem, n))

            add_hook(self.model, self.Sacts, mapping_layers)
            add_hook(self.ofa_teacher_model.model, self.Tacts, mapping_layers)

    def _compute_epochs(self):
        if getattr(self, 'epoch', None) == None:
C
ceci3 已提交
276 277 278 279 280 281 282
            assert self.run_config.total_images is not None, \
                "if not use set_epoch() to set epoch, please set total_images in run_config."
            assert self.run_config.train_batch_size is not None, \
                "if not use set_epoch() to set epoch, please set train_batch_size in run_config."
            assert self.run_config.n_epochs is not None, \
                "if not use set_epoch() to set epoch, please set n_epochs in run_config."
            self.iter_per_epochs = self.run_config.total_images // self.run_config.train_batch_size
C
ceci3 已提交
283 284
            epoch = self.iter // self.iter_per_epochs
        else:
C
ceci3 已提交
285
            epoch = self.epoch
C
ceci3 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        return epoch

    def _sample_from_nestdict(self, cands, sample_type, task, phase):
        sample_cands = dict()
        for k, v in cands.items():
            if isinstance(v, dict):
                sample_cands[k] = self._sample_from_nestdict(
                    v, sample_type=sample_type, task=task, phase=phase)
            elif isinstance(v, list) or isinstance(v, set) or isinstance(v,
                                                                         tuple):
                if sample_type == 'largest':
                    sample_cands[k] = v[-1]
                elif sample_type == 'smallest':
                    sample_cands[k] = v[0]
                else:
                    if k not in task:
                        # sort and deduplication in candidate_config
                        # fixed candidate not in task_list
                        sample_cands[k] = v[-1]
                    else:
                        # phase == None -> all candidate; phase == number, append small candidate in each phase
                        # phase only affect last task in current task_list
                        if phase != None and k == task[-1]:
                            start = -(phase + 2)
                        else:
                            start = 0
                        sample_cands[k] = np.random.choice(v[start:])

        return sample_cands

    def _sample_config(self, task, sample_type='random', phase=None):
        config = self._sample_from_nestdict(
            self.layers, sample_type=sample_type, task=task, phase=phase)
        return config

C
ceci3 已提交
321 322 323 324 325 326 327 328 329 330
    def set_task(self, task, phase=None):
        """
        set task in the ofa training progress.
        Parameters:
            task(list(str)|str): spectial task in training progress.
            phase(int, optional): the search space is gradually increased, use this parameter to spectial the phase in current task, if set to None, means use the whole search space in training progress. Default: None.
        Examples:
            .. code-block:: python
              ofa_model.set_task('width')
        """
C
ceci3 已提交
331 332 333 334 335
        self.manual_set_task = True
        self.task = task
        self.phase = phase

    def set_epoch(self, epoch):
C
ceci3 已提交
336 337 338 339 340 341 342 343
        """
        set epoch in the ofa training progress.
        Parameters:
            epoch(int): spectial epoch in training progress.
        Examples:
            .. code-block:: python
              ofa_model.set_epoch(3)
        """
C
ceci3 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        self.epoch = epoch

    def _progressive_shrinking(self):
        epoch = self._compute_epochs()
        self.task_idx, phase_idx = search_idx(epoch, self.run_config.n_epochs)
        self.task = self.elastic_order[:self.task_idx + 1]
        if 'width' in self.task:
            ### change width in task to concrete config
            self.task.remove('width')
            if 'expand_ratio' in self._elastic_task:
                self.task.append('expand_ratio')
            if 'channel' in self._elastic_task:
                self.task.append('channel')
        if len(self.run_config.n_epochs[self.task_idx]) == 1:
            phase_idx = None
        return self._sample_config(task=self.task, phase=phase_idx)

    def calc_distill_loss(self):
C
ceci3 已提交
362 363 364 365 366 367
        """
        Calculate distill loss if there are distillation.
        Examples:
            .. code-block:: python
              dis_loss = ofa_model.calc_distill_loss()
        """
C
ceci3 已提交
368 369 370 371 372 373
        losses = []
        assert len(self.netAs) > 0
        for i, netA in enumerate(self.netAs):
            n = self.distill_config.mapping_layers[i]
            Tact = self.Tacts[n]
            Sact = self.Sacts[n]
C
ceci3 已提交
374 375 376 377 378 379 380 381 382 383 384
            if isinstance(netA, SuperConv2D):
                Sact = netA(
                    Sact,
                    channel=getattr(netA, '_num_filters', netA._out_channels))
            elif isinstance(netA, SuperLinear):
                Sact = netA(
                    Sact,
                    channel=getattr(netA, '_output_dim', netA._out_features))
            else:
                Sact = Sact

C
ceci3 已提交
385 386
            Sact = Sact[0] if isinstance(Sact, tuple) else Sact
            Tact = Tact[0] if isinstance(Tact, tuple) else Tact
C
ceci3 已提交
387
            if self.distill_config.distill_fn == None:
C
ceci3 已提交
388
                loss = fluid.layers.mse_loss(Sact, Tact.detach())
C
ceci3 已提交
389
            else:
C
ceci3 已提交
390
                loss = distill_fn(Sact, Tact.detach())
C
ceci3 已提交
391
            losses.append(loss)
392 393 394
        if self.distill_config.lambda_distill != None:
            return sum(losses) * self.distill_config.lambda_distill
        return sum(losses)
C
ceci3 已提交
395 396 397 398 399 400 401 402 403

    ### TODO: complete it
    def search(self, eval_func, condition):
        pass

    ### TODO: complete it
    def export(self, config):
        pass

C
ceci3 已提交
404
    def set_net_config(self, net_config):
C
ceci3 已提交
405 406 407 408 409 410 411 412 413
        """
        Set the config of the special sub-network to be trained.
        Parameters:
            net_config(dict): special the config of sug-network.
        Examples:
            .. code-block:: python
              config = ofa_model.current_config
              ofa_model.set_net_config(config)
        """
C
ceci3 已提交
414 415
        self.net_config = net_config

C
ceci3 已提交
416 417 418 419 420 421 422 423 424
    def forward(self, *inputs, **kwargs):
        # =====================  teacher process  =====================
        teacher_output = None
        if self._add_teacher:
            teacher_output = self.ofa_teacher_model.model.forward(*inputs,
                                                                  **kwargs)
        # ============================================================

        # ====================   student process  =====================
C
ceci3 已提交
425 426 427 428 429 430
        if getattr(self.run_config, 'dynamic_batch_size', None) != None:
            self.dynamic_iter += 1
            if self.dynamic_iter == self.run_config.dynamic_batch_size[
                    self.task_idx]:
                self.iter += 1
                self.dynamic_iter = 0
C
ceci3 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

        if self.net_config == None:
            if self.train_full == True:
                self.current_config = self._sample_config(
                    task=None, sample_type='largest')
            else:
                if self.manual_set_task == False:
                    self.current_config = self._progressive_shrinking()
                else:
                    self.current_config = self._sample_config(
                        self.task, phase=self.phase)
        else:
            self.current_config = self.net_config

        _logger.debug("Current config is {}".format(self.current_config))
        if 'depth' in self.current_config:
C
ceci3 已提交
447
            kwargs['depth'] = self.current_config['depth']
C
ceci3 已提交
448 449

        return self.model.forward(*inputs, **kwargs), teacher_output