ofa.py 27.3 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import numpy as np
from collections import namedtuple
import paddle
import paddle.fluid as fluid
C
ceci3 已提交
20
from .utils.utils import get_paddle_version, remove_model_fn
C
ceci3 已提交
21 22
pd_ver = get_paddle_version()
if pd_ver == 185:
23
    from .layers_old import SuperConv2D, SuperLinear
C
ceci3 已提交
24
    Layer = paddle.fluid.dygraph.Layer
25
    DataParallel = paddle.fluid.dygraph.DataParallel
C
ceci3 已提交
26
else:
27
    from .layers import SuperConv2D, SuperLinear
C
ceci3 已提交
28
    Layer = paddle.nn.Layer
29 30
    DataParallel = paddle.DataParallel
from .layers_base import BaseBlock
C
ceci3 已提交
31 32
from .utils.utils import search_idx
from ...common import get_logger
C
ceci3 已提交
33
from ...core import GraphWrapper, dygraph2program
34
from .get_sub_model import get_prune_params_config, prune_params, check_search_space
C
ceci3 已提交
35 36 37 38 39

_logger = get_logger(__name__, level=logging.INFO)

__all__ = ['OFA', 'RunConfig', 'DistillConfig']

C
ceci3 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
RunConfig = namedtuple(
    'RunConfig',
    [
        # int, batch_size in training, used to get current epoch, default: None
        'train_batch_size',
        # list, the number of epoch of every task in training, default: None
        'n_epochs',
        # list, initial learning rate of every task in traning, NOT used now. Default: None.
        'init_learning_rate',
        # int, total images of train dataset, used to get current epoch, default: None
        'total_images',
        # list, elactic depth of the model in training, default: None
        'elastic_depth',
        # list, the number of sub-network to train per mini-batch data, used to get current epoch, default: None
        'dynamic_batch_size'
    ])
C
ceci3 已提交
56 57
RunConfig.__new__.__defaults__ = (None, ) * len(RunConfig._fields)

C
ceci3 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
DistillConfig = namedtuple(
    'DistillConfig',
    [
        # float, lambda scale of distillation loss, default: None.
        'lambda_distill',
        # instance of model, instance of teacher model, default: None.
        'teacher_model',
        # list(str), name of the layers which need a distillation, default: None.
        'mapping_layers',
        # str, the path of teacher pretrained model, default: None.
        'teacher_model_path',
        # instance of loss layer, the loss function used in distillation, if set to None, use mse_loss default, default: None.
        'distill_fn',
        # str, define which op append between teacher model and student model used in distillation, choice in ['conv', 'linear', None], default: None.
        'mapping_op'
    ])
C
ceci3 已提交
74 75 76
DistillConfig.__new__.__defaults__ = (None, ) * len(DistillConfig._fields)


C
ceci3 已提交
77
class OFABase(Layer):
C
ceci3 已提交
78 79 80
    def __init__(self, model):
        super(OFABase, self).__init__()
        self.model = model
81 82
        self._ofa_layers, self._elastic_task, self._key2name, self._layers = self.get_layers(
        )
C
ceci3 已提交
83 84

    def get_layers(self):
85
        ofa_layers = dict()
C
ceci3 已提交
86
        layers = dict()
87
        key2name = dict()
C
ceci3 已提交
88
        elastic_task = set()
89 90 91
        model_to_traverse = self.model._layers if isinstance(
            self.model, DataParallel) else self.model
        for name, sublayer in model_to_traverse.named_sublayers():
C
ceci3 已提交
92 93
            if isinstance(sublayer, BaseBlock):
                sublayer.set_supernet(self)
C
ceci3 已提交
94
                if not sublayer.fixed:
95
                    ofa_layers[name] = sublayer.candidate_config
C
ceci3 已提交
96
                    layers[sublayer.key] = sublayer.candidate_config
97
                    key2name[sublayer.key] = name
C
ceci3 已提交
98 99
                    for k in sublayer.candidate_config.keys():
                        elastic_task.add(k)
100
        return ofa_layers, elastic_task, key2name, layers
C
ceci3 已提交
101 102 103 104 105 106

    def forward(self, *inputs, **kwargs):
        raise NotImplementedError

    def layers_forward(self, block, *inputs, **kwargs):
        if getattr(self, 'current_config', None) != None:
C
ceci3 已提交
107 108 109
            ### if block is fixed, donnot join key into candidate
            ### concrete config as parameter in kwargs
            if block.fixed == False:
110 111 112 113 114
                assert self._key2name[
                    block.
                    key] in self.current_config, 'DONNT have {} layer in config.'.format(
                        self._key2name[block.key])
                config = self.current_config[self._key2name[block.key]]
C
ceci3 已提交
115 116 117
            else:
                config = dict()
                config.update(kwargs)
C
ceci3 已提交
118 119 120 121 122 123
        else:
            config = dict()
        logging.debug(self.model, config)

        return block.fn(*inputs, **config)

124 125 126 127
    @property
    def ofa_layers(self):
        return self._ofa_layers

C
ceci3 已提交
128 129 130 131 132 133
    @property
    def layers(self):
        return self._layers


class OFA(OFABase):
C
ceci3 已提交
134 135 136 137 138 139 140 141 142 143 144 145
    """
    Convert the training progress to the Once-For-All training progress, a detailed description in the paper: `Once-for-All: Train One Network and Specialize it for Efficient Deployment<https://arxiv.org/abs/1908.09791>`_ . This paper propose a training propgress named progressive shrinking (PS), which means we start with training the largest neural network with the maximum kernel size (i.e., 7), depth (i.e., 4), and width (i.e., 6). Next, we progressively fine-tune the network to support smaller sub-networks by gradually adding them into the sampling space (larger sub-networks may also be sampled). Specifically, after training the largest network, we first support elastic kernel size which can choose from {3, 5, 7} at each layer, while the depth and width remain the maximum values. Then, we support elastic depth and elastic width sequentially. 

    Parameters:
        model(paddle.nn.Layer): instance of model.
        run_config(paddleslim.ofa.RunConfig, optional): config in ofa training, can reference `<>`_ . Default: None.
        distill_config(paddleslim.ofa.DistillConfig, optional): config of distilltion in ofa training, can reference `<>`_. Default: None.
        elastic_order(list, optional): define the training order, if it set to None, use the default order in the paper. Default: None.
        train_full(bool, optional): whether to train the largest sub-network only. Default: False.

    Examples:
        .. code-block:: python
C
ceci3 已提交
146 147 148 149 150 151 152 153
          from paddle.vision.models import mobilenet_v1
          from paddleslim.nas.ofa import OFA
          from paddleslim.nas.ofa.convert_super import Convert, supernet

          model = mobilenet_v1()
          sp_net_config = supernet(kernel_size=(3, 5, 7), expand_ratio=[1, 2, 4])
          sp_model = Convert(sp_net_config).convert(model)
          ofa_model = OFA(sp_model)
C
ceci3 已提交
154 155 156

    """

C
ceci3 已提交
157 158
    def __init__(self,
                 model,
C
ceci3 已提交
159
                 run_config=None,
C
ceci3 已提交
160 161 162 163
                 distill_config=None,
                 elastic_order=None,
                 train_full=False):
        super(OFA, self).__init__(model)
C
ceci3 已提交
164
        self.net_config = None
C
ceci3 已提交
165 166 167 168 169 170 171 172 173 174
        self.run_config = run_config
        self.distill_config = distill_config
        self.elastic_order = elastic_order
        self.train_full = train_full
        self.iter = 0
        self.dynamic_iter = 0
        self.manual_set_task = False
        self.task_idx = 0
        self._add_teacher = False
        self.netAs_param = []
175 176 177
        self._mapping_layers = None
        self._build_ss = False
        self._broadcast = False
C
ceci3 已提交
178 179 180 181 182 183

        ### if elastic_order is none, use default order
        if self.elastic_order is not None:
            assert isinstance(self.elastic_order,
                              list), 'elastic_order must be a list'

C
ceci3 已提交
184 185 186
            if getattr(self.run_config, 'elastic_depth', None) != None:
                depth_list = list(set(self.run_config.elastic_depth))
                depth_list.sort()
187
                self._ofa_layers['depth'] = depth_list
C
ceci3 已提交
188

C
ceci3 已提交
189 190 191 192 193 194 195 196 197 198 199
        if self.elastic_order is None:
            self.elastic_order = []
            # zero, elastic resulotion, write in demo
            # first, elastic kernel size
            if 'kernel_size' in self._elastic_task:
                self.elastic_order.append('kernel_size')

            # second, elastic depth, such as: list(2, 3, 4)
            if getattr(self.run_config, 'elastic_depth', None) != None:
                depth_list = list(set(self.run_config.elastic_depth))
                depth_list.sort()
200
                self._ofa_layers['depth'] = depth_list
C
ceci3 已提交
201 202 203 204 205 206 207 208 209
                self.elastic_order.append('depth')

            # final, elastic width
            if 'expand_ratio' in self._elastic_task:
                self.elastic_order.append('width')

            if 'channel' in self._elastic_task and 'width' not in self.elastic_order:
                self.elastic_order.append('width')

C
ceci3 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        if getattr(self.run_config, 'n_epochs', None) != None:
            assert len(self.run_config.n_epochs) == len(self.elastic_order)
            for idx in range(len(run_config.n_epochs)):
                assert isinstance(
                    run_config.n_epochs[idx],
                    list), "each candidate in n_epochs must be list"

            if self.run_config.dynamic_batch_size != None:
                assert len(self.run_config.n_epochs) == len(
                    self.run_config.dynamic_batch_size)
            if self.run_config.init_learning_rate != None:
                assert len(self.run_config.n_epochs) == len(
                    self.run_config.init_learning_rate)
                for idx in range(len(run_config.n_epochs)):
                    assert isinstance(
                        run_config.init_learning_rate[idx], list
                    ), "each candidate in init_learning_rate must be list"
C
ceci3 已提交
227 228

        ### =================  add distill prepare ======================
C
ceci3 已提交
229
        if self.distill_config != None:
C
ceci3 已提交
230 231 232 233 234 235 236 237
            self._add_teacher = True
            self._prepare_distill()

        self.model.train()

    def _prepare_distill(self):
        if self.distill_config.teacher_model == None:
            logging.error(
C
ceci3 已提交
238
                'If you want to add distill, please input instance of teacher model'
C
ceci3 已提交
239 240
            )

C
ceci3 已提交
241
        ### instance model by user can input super-param easily.
C
ceci3 已提交
242
        assert isinstance(self.distill_config.teacher_model, Layer)
C
ceci3 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255

        # load teacher parameter
        if self.distill_config.teacher_model_path != None:
            param_state_dict, _ = paddle.load_dygraph(
                self.distill_config.teacher_model_path)
            self.distill_config.teacher_model.set_dict(param_state_dict)

        self.ofa_teacher_model = OFABase(self.distill_config.teacher_model)
        self.ofa_teacher_model.model.eval()

        # add hook if mapping layers is not None
        # if mapping layer is None, return the output of the teacher model,
        # if mapping layer is NOT None, add hook and compute distill loss about mapping layers.
C
ceci3 已提交
256
        mapping_layers = getattr(self.distill_config, 'mapping_layers', None)
C
ceci3 已提交
257
        if mapping_layers != None:
258 259 260 261 262
            if isinstance(self.model, DataParallel):
                for idx, name in enumerate(mapping_layers):
                    if name[:7] != '_layers':
                        mapping_layers[idx] = '_layers.' + name
            self._mapping_layers = mapping_layers
C
ceci3 已提交
263 264
            self.netAs = []
            for name, sublayer in self.model.named_sublayers():
265
                if name in self._mapping_layers:
C
ceci3 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                    if self.distill_config.mapping_op != None:
                        if self.distill_config.mapping_op.lower() == 'conv2d':
                            netA = SuperConv2D(
                                getattr(sublayer, '_num_filters',
                                        sublayer._out_channels),
                                getattr(sublayer, '_num_filters',
                                        sublayer._out_channels), 1)
                        elif self.distill_config.mapping_op.lower() == 'linear':
                            netA = SuperLinear(
                                getattr(sublayer, '_output_dim',
                                        sublayer._out_features),
                                getattr(sublayer, '_output_dim',
                                        sublayer._out_features))
                        else:
                            raise NotImplementedError(
                                "Not Support Op: {}".format(
                                    self.distill_config.mapping_op.lower()))
                    else:
                        netA = None

                    if netA != None:
                        self.netAs_param.extend(netA.parameters())
C
ceci3 已提交
288 289
                    self.netAs.append(netA)

C
ceci3 已提交
290 291
    def _reset_hook_before_forward(self):
        self.Tacts, self.Sacts = {}, {}
292
        if self._mapping_layers != None:
C
ceci3 已提交
293

C
ceci3 已提交
294 295 296 297 298 299 300 301 302 303 304
            def get_activation(mem, name):
                def get_output_hook(layer, input, output):
                    mem[name] = output

                return get_output_hook

            def add_hook(net, mem, mapping_layers):
                for idx, (n, m) in enumerate(net.named_sublayers()):
                    if n in mapping_layers:
                        m.register_forward_post_hook(get_activation(mem, n))

305 306 307
            add_hook(self.model, self.Sacts, self._mapping_layers)
            add_hook(self.ofa_teacher_model.model, self.Tacts,
                     self._mapping_layers)
C
ceci3 已提交
308 309 310

    def _compute_epochs(self):
        if getattr(self, 'epoch', None) == None:
C
ceci3 已提交
311 312 313 314 315 316 317
            assert self.run_config.total_images is not None, \
                "if not use set_epoch() to set epoch, please set total_images in run_config."
            assert self.run_config.train_batch_size is not None, \
                "if not use set_epoch() to set epoch, please set train_batch_size in run_config."
            assert self.run_config.n_epochs is not None, \
                "if not use set_epoch() to set epoch, please set n_epochs in run_config."
            self.iter_per_epochs = self.run_config.total_images // self.run_config.train_batch_size
C
ceci3 已提交
318 319
            epoch = self.iter // self.iter_per_epochs
        else:
C
ceci3 已提交
320
            epoch = self.epoch
C
ceci3 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        return epoch

    def _sample_from_nestdict(self, cands, sample_type, task, phase):
        sample_cands = dict()
        for k, v in cands.items():
            if isinstance(v, dict):
                sample_cands[k] = self._sample_from_nestdict(
                    v, sample_type=sample_type, task=task, phase=phase)
            elif isinstance(v, list) or isinstance(v, set) or isinstance(v,
                                                                         tuple):
                if sample_type == 'largest':
                    sample_cands[k] = v[-1]
                elif sample_type == 'smallest':
                    sample_cands[k] = v[0]
                else:
                    if k not in task:
                        # sort and deduplication in candidate_config
                        # fixed candidate not in task_list
                        sample_cands[k] = v[-1]
                    else:
                        # phase == None -> all candidate; phase == number, append small candidate in each phase
                        # phase only affect last task in current task_list
                        if phase != None and k == task[-1]:
                            start = -(phase + 2)
                        else:
                            start = 0
                        sample_cands[k] = np.random.choice(v[start:])

        return sample_cands

    def _sample_config(self, task, sample_type='random', phase=None):
        config = self._sample_from_nestdict(
353
            self._ofa_layers, sample_type=sample_type, task=task, phase=phase)
C
ceci3 已提交
354 355
        return config

C
ceci3 已提交
356 357 358 359 360 361 362 363 364 365
    def set_task(self, task, phase=None):
        """
        set task in the ofa training progress.
        Parameters:
            task(list(str)|str): spectial task in training progress.
            phase(int, optional): the search space is gradually increased, use this parameter to spectial the phase in current task, if set to None, means use the whole search space in training progress. Default: None.
        Examples:
            .. code-block:: python
              ofa_model.set_task('width')
        """
C
ceci3 已提交
366 367 368 369 370
        self.manual_set_task = True
        self.task = task
        self.phase = phase

    def set_epoch(self, epoch):
C
ceci3 已提交
371 372 373 374 375 376 377 378
        """
        set epoch in the ofa training progress.
        Parameters:
            epoch(int): spectial epoch in training progress.
        Examples:
            .. code-block:: python
              ofa_model.set_epoch(3)
        """
C
ceci3 已提交
379 380 381 382
        self.epoch = epoch

    def _progressive_shrinking(self):
        epoch = self._compute_epochs()
383 384 385 386 387 388 389
        phase_idx = None
        if len(self.elastic_order) != 1:
            assert self.run_config.n_epochs is not None, \
                "if not use set_task() to set current task, please set n_epochs in run_config " \
                "for to compute which task in this epoch."
            self.task_idx, phase_idx = search_idx(epoch,
                                                  self.run_config.n_epochs)
C
ceci3 已提交
390 391 392 393 394 395 396 397 398 399 400
        self.task = self.elastic_order[:self.task_idx + 1]
        if 'width' in self.task:
            ### change width in task to concrete config
            self.task.remove('width')
            if 'expand_ratio' in self._elastic_task:
                self.task.append('expand_ratio')
            if 'channel' in self._elastic_task:
                self.task.append('channel')
        return self._sample_config(task=self.task, phase=phase_idx)

    def calc_distill_loss(self):
C
ceci3 已提交
401 402 403 404 405 406
        """
        Calculate distill loss if there are distillation.
        Examples:
            .. code-block:: python
              dis_loss = ofa_model.calc_distill_loss()
        """
C
ceci3 已提交
407 408 409 410
        losses = []
        assert len(self.netAs) > 0
        for i, netA in enumerate(self.netAs):
            n = self.distill_config.mapping_layers[i]
C
ceci3 已提交
411 412 413
            ### add for elastic depth
            if n not in self.Sacts.keys():
                continue
C
ceci3 已提交
414 415
            Tact = self.Tacts[n]
            Sact = self.Sacts[n]
C
ceci3 已提交
416 417 418 419 420 421 422 423 424 425 426
            if isinstance(netA, SuperConv2D):
                Sact = netA(
                    Sact,
                    channel=getattr(netA, '_num_filters', netA._out_channels))
            elif isinstance(netA, SuperLinear):
                Sact = netA(
                    Sact,
                    channel=getattr(netA, '_output_dim', netA._out_features))
            else:
                Sact = Sact

C
ceci3 已提交
427 428
            Sact = Sact[0] if isinstance(Sact, tuple) else Sact
            Tact = Tact[0] if isinstance(Tact, tuple) else Tact
C
ceci3 已提交
429
            if self.distill_config.distill_fn == None:
C
ceci3 已提交
430
                loss = fluid.layers.mse_loss(Sact, Tact.detach())
C
ceci3 已提交
431
            else:
C
ceci3 已提交
432
                loss = distill_fn(Sact, Tact.detach())
C
ceci3 已提交
433
            losses.append(loss)
434 435 436
        if self.distill_config.lambda_distill != None:
            return sum(losses) * self.distill_config.lambda_distill
        return sum(losses)
C
ceci3 已提交
437 438 439 440 441

    ### TODO: complete it
    def search(self, eval_func, condition):
        pass

C
ceci3 已提交
442 443 444 445
    def _export_sub_model_config(self, origin_model, config, input_shapes,
                                 input_dtypes):
        origin_model_config = {}
        for name, sublayer in origin_model.named_sublayers():
446 447
            if isinstance(sublayer, BaseBlock):
                sublayer = sublayer.fn
C
ceci3 已提交
448
            for param in sublayer.parameters(include_sublayers=False):
449 450
                if name in config.keys():
                    origin_model_config[param.name] = config[name]
C
ceci3 已提交
451 452 453 454 455 456 457 458 459 460 461

        program = dygraph2program(
            origin_model, inputs=input_shapes, dtypes=input_dtypes)
        graph = GraphWrapper(program)
        param_prune_config = get_prune_params_config(graph, origin_model_config)
        return param_prune_config

    def export(self,
               config,
               input_shapes,
               input_dtypes,
462
               origin_model=None,
C
ceci3 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
               load_weights_from_supernet=True):
        """
        Export the weights according origin model and sub model config.
        Parameters:
            origin_model(paddle.nn.Layer): the instance of original model.
            config(dict): the config of sub model, can get by OFA.get_current_config() or some special config, such as paddleslim.nas.ofa.utils.dynabert_config(width_mult).
            input_shapes(list|list(list)): the shape of all inputs.
            input_dtypes(list): the dtype of all inputs.
            load_weights_from_supernet(bool, optional): whether to load weights from SuperNet. Default: False.
        Examples:
            .. code-block:: python
              from paddle.vision.models import mobilenet_v1
              origin_model = mobilenet_v1()

              config = {'conv2d_0': {'expand_ratio': 2}, 'conv2d_1': {'expand_ratio': 2}}
              origin_model = ofa_model.export(origin_model, config, input_shapes=[1, 3, 28, 28], input_dtypes=['float32'])
        """
        super_sd = None
481
        if load_weights_from_supernet and origin_model != None:
C
ceci3 已提交
482 483
            super_sd = remove_model_fn(origin_model, self.model.state_dict())

484 485 486 487 488
        if origin_model == None:
            origin_model = self.model
        origin_model = origin_model._layers if isinstance(
            origin_model, DataParallel) else origin_model

C
ceci3 已提交
489 490 491 492 493 494 495 496
        param_config = self._export_sub_model_config(origin_model, config,
                                                     input_shapes, input_dtypes)
        prune_params(origin_model, param_config, super_sd)
        return origin_model

    @property
    def get_current_config(self):
        return self.current_config
C
ceci3 已提交
497

C
ceci3 已提交
498
    def set_net_config(self, net_config):
C
ceci3 已提交
499 500 501 502 503 504
        """
        Set the config of the special sub-network to be trained.
        Parameters:
            net_config(dict): special the config of sug-network.
        Examples:
            .. code-block:: python
C
ceci3 已提交
505
              config = {'conv2d_0': {'expand_ratio': 2}, 'conv2d_1': {'expand_ratio': 2}}
C
ceci3 已提交
506 507
              ofa_model.set_net_config(config)
        """
C
ceci3 已提交
508 509
        self.net_config = net_config

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    def _find_ele(self, inp, targets):
        def _roll_eles(target_list, types=(list, set, tuple)):
            if isinstance(target_list, types):
                for targ in target_list:
                    for v in _roll_eles(targ, types):
                        yield v
            else:
                yield target_list

        if inp in list(_roll_eles(targets)):
            return True
        else:
            return False

    def _clear_search_space(self, *inputs, **kwargs):
        """ find shortcut in model, and clear up the search space """
        input_shapes = []
        input_dtypes = []
        for n in inputs:
            input_shapes.append(n.shape)
            input_dtypes.append(n.numpy().dtype)
        for n, v in kwargs.items():
            input_shapes.append(v.shape)
            input_dtypes.append(v.numpy().dtype)

        ### find shortcut block using static model
        _st_prog = dygraph2program(
            self.model, inputs=input_shapes, dtypes=input_dtypes)
        self._same_ss = check_search_space(GraphWrapper(_st_prog))

        if self._same_ss != None:
            self._same_ss = sorted(self._same_ss)
            self._param2key = {}
            self._broadcast = True

            ### the name of sublayer is the key in search space
            ### param.name is the name in self._same_ss
            model_to_traverse = self.model._layers if isinstance(
                self.model, DataParallel) else self.model
            for name, sublayer in model_to_traverse.named_sublayers():
                if isinstance(sublayer, BaseBlock):
                    for param in sublayer.parameters():
                        if self._find_ele(param.name, self._same_ss):
                            self._param2key[param.name] = name

            for per_ss in self._same_ss:
                for ss in per_ss[1:]:
                    if 'expand_ratio' in self._ofa_layers[self._param2key[ss]]:
                        self._ofa_layers[self._param2key[ss]].pop(
                            'expand_ratio')
                    elif 'channel' in self._ofa_layers[self._param2key[ss]]:
                        self._ofa_layers[self._param2key[ss]].pop('channel')
                    if len(self._ofa_layers[self._param2key[ss]]) == 0:
                        self._ofa_layers.pop(self._param2key[ss])

    def _broadcast_ss(self):
        """ broadcast search space after random sample."""
        for per_ss in self._same_ss:
            for ss in per_ss[1:]:
                key = self._param2key[ss]
                pre_key = self._param2key[per_ss[0]]
                if key in self.current_config:
                    if 'expand_ratio' in self.current_config[pre_key]:
                        self.current_config[key].update({
                            'expand_ratio':
                            self.current_config[pre_key]['expand_ratio']
                        })
                    elif 'channel' in self.current_config[pre_key]:
                        self.current_config[key].update({
                            'channel': self.current_config[pre_key]['channel']
                        })
                else:
                    if 'expand_ratio' in self.current_config[pre_key]:
                        self.current_config[key] = {
                            'expand_ratio':
                            self.current_config[pre_key]['expand_ratio']
                        }
                    elif 'channel' in self.current_config[pre_key]:
                        self.current_config[key] = {
                            'channel': self.current_config[pre_key]['channel']
                        }

C
ceci3 已提交
592 593 594 595
    def forward(self, *inputs, **kwargs):
        # =====================  teacher process  =====================
        teacher_output = None
        if self._add_teacher:
C
ceci3 已提交
596
            self._reset_hook_before_forward()
C
ceci3 已提交
597 598 599 600 601
            teacher_output = self.ofa_teacher_model.model.forward(*inputs,
                                                                  **kwargs)
        # ============================================================

        # ====================   student process  =====================
602 603 604 605
        if not self._build_ss and self.net_config == None:
            self._clear_search_space(*inputs, **kwargs)
            self._build_ss = True

C
ceci3 已提交
606 607 608 609 610 611
        if getattr(self.run_config, 'dynamic_batch_size', None) != None:
            self.dynamic_iter += 1
            if self.dynamic_iter == self.run_config.dynamic_batch_size[
                    self.task_idx]:
                self.iter += 1
                self.dynamic_iter = 0
C
ceci3 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

        if self.net_config == None:
            if self.train_full == True:
                self.current_config = self._sample_config(
                    task=None, sample_type='largest')
            else:
                if self.manual_set_task == False:
                    self.current_config = self._progressive_shrinking()
                else:
                    self.current_config = self._sample_config(
                        self.task, phase=self.phase)
        else:
            self.current_config = self.net_config

        _logger.debug("Current config is {}".format(self.current_config))
        if 'depth' in self.current_config:
C
ceci3 已提交
628
            kwargs['depth'] = self.current_config['depth']
C
ceci3 已提交
629

630 631 632
        if self._broadcast:
            self._broadcast_ss()

C
ceci3 已提交
633
        return self.model.forward(*inputs, **kwargs), teacher_output