program.py 26.8 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27
import paddle
import paddle.distributed as dist
from tqdm import tqdm
X
xiaoting 已提交
28 29
import cv2
import numpy as np
W
WenmuZhou 已提交
30 31
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
32 33
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
34
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
35
from ppocr.utils.logging import get_logger
36
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
37
from ppocr.utils import profiler
D
dyning 已提交
38
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
39

D
dyning 已提交
40

L
LDOUBLEV 已提交
41 42 43 44 45 46 47
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
53 54
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
55
        )
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
84 85
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
86 87


88
def merge_config(config, opts):
L
LDOUBLEV 已提交
89 90 91 92 93 94
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
95
    for key, value in opts.items():
L
LDOUBLEV 已提交
96
        if "." not in key:
97 98
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
99
            else:
100
                config[key] = value
L
LDOUBLEV 已提交
101 102
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
103
            assert (
104
                sub_keys[0] in config
105 106
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
107 108
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
109 110 111 112 113
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
114
    return config
L
LDOUBLEV 已提交
115 116


117
def check_device(use_gpu, use_xpu=False, use_npu=False, use_mlu=False):
L
LDOUBLEV 已提交
118 119 120 121
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
122 123 124 125
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
126 127 128
          "model on CPU"

    try:
X
xiaoting 已提交
129 130
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
131
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
132 133 134 135
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
136
            sys.exit(1)
D
duanyanhui 已提交
137 138 139 140 141 142 143 144 145 146 147 148
        if use_npu:
            if int(paddle.version.major) != 0 and int(
                    paddle.version.major) <= 2 and int(
                        paddle.version.minor) <= 4:
                if not paddle.device.is_compiled_with_npu():
                    print(err.format("use_npu", "npu", "npu", "use_npu"))
                    sys.exit(1)
            # is_compiled_with_npu() has been updated after paddle-2.4
            else:
                if not paddle.device.is_compiled_with_custom_device("npu"):
                    print(err.format("use_npu", "npu", "npu", "use_npu"))
                    sys.exit(1)
149 150 151
        if use_mlu and not paddle.device.is_compiled_with_mlu():
            print(err.format("use_mlu", "mlu", "mlu", "use_mlu"))
            sys.exit(1)
152 153 154
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
155

文幕地方's avatar
文幕地方 已提交
156 157 158 159 160
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
161 162
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
163 164 165 166 167 168
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
169 170 171
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, paddle.Tensor):
172
        preds = preds.astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
173
    return preds
174

文幕地方's avatar
文幕地方 已提交
175

W
WenmuZhou 已提交
176
def train(config,
D
dyning 已提交
177 178 179
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
180 181 182 183 184 185 186 187
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
188
          log_writer=None,
文幕地方's avatar
文幕地方 已提交
189
          scaler=None,
文幕地方's avatar
文幕地方 已提交
190
          amp_level='O2',
Z
Zhang Ting 已提交
191
          amp_custom_black_list=[],
Z
Zhang Ting 已提交
192 193
          amp_custom_white_list=[],
          amp_dtype='float16'):
W
WenmuZhou 已提交
194 195
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
196
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
197 198 199 200
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
201
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
202

D
dyning 已提交
203
    global_step = 0
204 205
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
206 207 208 209
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
210 211
        if len(valid_dataloader) == 0:
            logger.info(
212 213
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
214 215
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
216
        logger.info(
217 218
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
219
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
220 221
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
222 223
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
224 225 226 227
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
228
    model_average = False
W
WenmuZhou 已提交
229 230
    model.train()

T
tink2123 已提交
231
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
232
    extra_input_models = [
233
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SVTR_LCNet", "SPIN", "VisionLAN",
T
topduke 已提交
234
        "RobustScanner", "RFL", 'DRRG', 'SATRN', 'SVTR_HGNet'
A
andyjpaddle 已提交
235
    ]
A
andyjpaddle 已提交
236
    extra_input = False
A
andyjpaddle 已提交
237
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
238 239 240
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
241 242
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
243
    try:
L
fix bug  
LDOUBLEV 已提交
244
        model_type = config['Architecture']['model_type']
245
    except:
L
fix bug  
LDOUBLEV 已提交
246
        model_type = None
A
andyjpaddle 已提交
247

T
tink2123 已提交
248
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
249

250 251 252 253
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
254 255
    train_reader_cost = 0.0
    train_batch_cost = 0.0
256
    reader_start = time.time()
257
    eta_meter = AverageMeter()
258 259 260

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
261

T
tink2123 已提交
262
    for epoch in range(start_epoch, epoch_num + 1):
263 264 265 266 267
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
X
xiaoting 已提交
268

W
WenmuZhou 已提交
269
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
270
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
271
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
272
            if idx >= max_iter:
W
WenmuZhou 已提交
273 274 275
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
276
            if use_srn:
T
tink2123 已提交
277
                model_average = True
S
stephon 已提交
278 279
            # use amp
            if scaler:
280 281
                with paddle.amp.auto_cast(
                        level=amp_level,
Z
Zhang Ting 已提交
282
                        custom_black_list=amp_custom_black_list,
Z
Zhang Ting 已提交
283 284
                        custom_white_list=amp_custom_white_list,
                        dtype=amp_dtype):
S
stephon 已提交
285 286
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
287
                    elif model_type in ["kie"]:
A
andyjpaddle 已提交
288
                        preds = model(batch)
D
dorren 已提交
289 290
                    elif algorithm in ['CAN']:
                        preds = model(batch[:3])
S
stephon 已提交
291 292
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
293 294 295 296 297 298
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
299
            else:
S
stephon 已提交
300 301
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
302
                elif model_type in ["kie", 'sr']:
L
LDOUBLEV 已提交
303
                    preds = model(batch)
D
dorren 已提交
304 305
                elif algorithm in ['CAN']:
                    preds = model(batch[:3])
S
stephon 已提交
306 307
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
308 309
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
310 311
                avg_loss.backward()
                optimizer.step()
X
xiaoting 已提交
312

W
WenmuZhou 已提交
313
            optimizer.clear_grad()
W
WenmuZhou 已提交
314

315 316
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
X
xiaoting 已提交
317
                if model_type in ['kie', 'sr']:
318
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
319 320 321
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
D
dorren 已提交
322 323 324
                elif algorithm in ['CAN']:
                    model_type = 'can'
                    eval_class(preds[0], batch[2:], epoch_reset=(idx == 0))
325
                else:
A
andyjpaddle 已提交
326 327 328 329
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
andyjpaddle 已提交
330 331 332
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
333 334
                    else:
                        post_result = post_process_class(preds, batch[1])
335 336 337 338
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

339 340 341
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
342
            global_step += 1
文幕地方's avatar
文幕地方 已提交
343
            total_samples += len(images)
W
WenmuZhou 已提交
344

D
dyning 已提交
345 346
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
347 348

            # logger and visualdl
L
Lin Manhui 已提交
349 350 351 352
            stats = {
                k: float(v) if v.shape == [] else v.numpy().mean()
                for k, v in loss.items()
            }
W
WenmuZhou 已提交
353 354 355
            stats['lr'] = lr
            train_stats.update(stats)

356
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
357 358
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
359

360 361 362
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
363
                logs = train_stats.log()
L
LDOUBLEV 已提交
364

365 366 367 368
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
X
xiaoting 已提交
369 370
                    '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                    'ips: {:.5f} samples/s, eta: {}'.format(
371 372 373 374 375
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
376
                logger.info(strs)
377

文幕地方's avatar
文幕地方 已提交
378
                total_samples = 0
379 380
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
381 382
            # eval
            if global_step > start_eval_step and \
383 384
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
385 386 387 388 389 390 391
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
392 393 394 395 396
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
397
                    model_type,
文幕地方's avatar
文幕地方 已提交
398
                    extra_input=extra_input,
文幕地方's avatar
文幕地方 已提交
399 400
                    scaler=scaler,
                    amp_level=amp_level,
Z
Zhang Ting 已提交
401 402 403
                    amp_custom_black_list=amp_custom_black_list,
                    amp_custom_white_list=amp_custom_white_list,
                    amp_dtype=amp_dtype)
L
LDOUBLEV 已提交
404 405 406
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
407 408

                # logger metric
409
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
410 411
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
412

L
LDOUBLEV 已提交
413
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
414
                        main_indicator]:
L
LDOUBLEV 已提交
415
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
416 417 418 419 420 421
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
422
                        config,
W
WenmuZhou 已提交
423 424 425
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
426 427
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
428
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
429 430 431 432
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
433
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
434 435 436 437 438 439 440 441 442 443 444 445
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
446

文幕地方's avatar
文幕地方 已提交
447
            reader_start = time.time()
W
WenmuZhou 已提交
448 449 450 451 452 453
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
454
                config,
W
WenmuZhou 已提交
455 456 457
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
458 459
                epoch=epoch,
                global_step=global_step)
460

461 462
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
463

W
WenmuZhou 已提交
464 465 466 467 468 469
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
470
                config,
W
WenmuZhou 已提交
471 472 473
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
474 475
                epoch=epoch,
                global_step=global_step)
476
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
477 478
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
479

L
LDOUBLEV 已提交
480
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
481 482
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
483 484
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
485 486 487
    return


M
refine  
MissPenguin 已提交
488 489 490 491
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
492
         model_type=None,
文幕地方's avatar
文幕地方 已提交
493
         extra_input=False,
文幕地方's avatar
文幕地方 已提交
494 495
         scaler=None,
         amp_level='O2',
Z
Zhang Ting 已提交
496 497 498
         amp_custom_black_list=[],
         amp_custom_white_list=[],
         amp_dtype='float16'):
W
WenmuZhou 已提交
499 500 501 502
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
503 504 505 506 507
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
508 509
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
X
xiaoting 已提交
510
        sum_images = 0
W
WenmuZhou 已提交
511
        for idx, batch in enumerate(valid_dataloader):
512
            if idx >= max_iter:
W
WenmuZhou 已提交
513
                break
W
fix bug  
WenmuZhou 已提交
514
            images = batch[0]
W
WenmuZhou 已提交
515
            start = time.time()
文幕地方's avatar
文幕地方 已提交
516 517 518

            # use amp
            if scaler:
519 520
                with paddle.amp.auto_cast(
                        level=amp_level,
Z
Zhang Ting 已提交
521 522
                        custom_black_list=amp_custom_black_list,
                        dtype=amp_dtype):
文幕地方's avatar
文幕地方 已提交
523 524
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
525
                    elif model_type in ["kie"]:
文幕地方's avatar
文幕地方 已提交
526
                        preds = model(batch)
D
dorren 已提交
527 528
                    elif model_type in ['can']:
                        preds = model(batch[:3])
X
xiaoting 已提交
529 530 531 532
                    elif model_type in ['sr']:
                        preds = model(batch)
                        sr_img = preds["sr_img"]
                        lr_img = preds["lr_img"]
文幕地方's avatar
文幕地方 已提交
533 534
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
535
                preds = to_float32(preds)
X
xiaoting 已提交
536
            else:
文幕地方's avatar
文幕地方 已提交
537 538
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
539
                elif model_type in ["kie"]:
文幕地方's avatar
文幕地方 已提交
540
                    preds = model(batch)
D
dorren 已提交
541 542
                elif model_type in ['can']:
                    preds = model(batch[:3])
X
xiaoting 已提交
543 544 545 546
                elif model_type in ['sr']:
                    preds = model(batch)
                    sr_img = preds["sr_img"]
                    lr_img = preds["lr_img"]
文幕地方's avatar
文幕地方 已提交
547 548 549
                else:
                    preds = model(images)

550 551 552 553 554 555
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
556 557 558
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
559 560 561 562 563 564
            if model_type in ['table', 'kie']:
                if post_process_class is None:
                    eval_class(preds, batch_numpy)
                else:
                    post_result = post_process_class(preds, batch_numpy)
                    eval_class(post_result, batch_numpy)
X
xiaoting 已提交
565 566
            elif model_type in ['sr']:
                eval_class(preds, batch_numpy)
D
dorren 已提交
567
            elif model_type in ['can']:
568
                eval_class(preds[0], batch_numpy[2:], epoch_reset=(idx == 0))
M
MissPenguin 已提交
569
            else:
570 571
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
572

W
fix bug  
WenmuZhou 已提交
573
            pbar.update(1)
W
WenmuZhou 已提交
574
            total_frame += len(images)
X
xiaoting 已提交
575
            sum_images += 1
L
LDOUBLEV 已提交
576 577
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
578

W
fix bug  
WenmuZhou 已提交
579
    pbar.close()
W
WenmuZhou 已提交
580
    model.train()
L
LDOUBLEV 已提交
581 582
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
583

T
tink2123 已提交
584

B
Bin Lu 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


634
def preprocess(is_train=False):
L
licx 已提交
635
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
636
    profiler_options = FLAGS.profiler_options
L
licx 已提交
637
    config = load_config(FLAGS.config)
638
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
639
    profile_dic = {"profiler_options": FLAGS.profiler_options}
640
    config = merge_config(config, profile_dic)
L
licx 已提交
641

W
WenmuZhou 已提交
642 643 644 645 646 647 648 649 650 651
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
652
    logger = get_logger(log_file=log_file)
L
licx 已提交
653 654

    # check if set use_gpu=True in paddlepaddle cpu version
655
    use_gpu = config['Global'].get('use_gpu', False)
X
xiaoting 已提交
656
    use_xpu = config['Global'].get('use_xpu', False)
657
    use_npu = config['Global'].get('use_npu', False)
658
    use_mlu = config['Global'].get('use_mlu', False)
659

W
WenmuZhou 已提交
660 661
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
662
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
663
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
664
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
665 666
        'SVTR', 'SVTR_LCNet', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN',
        'VisionLAN', 'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL', 'DRRG',
T
topduke 已提交
667
        'CAN', 'Telescope', 'SATRN', 'SVTR_HGNet'
W
WenmuZhou 已提交
668
    ]
L
licx 已提交
669

670
    if use_xpu:
X
xiaoting 已提交
671
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
672 673
    elif use_npu:
        device = 'npu:{0}'.format(os.getenv('FLAGS_selected_npus', 0))
674 675
    elif use_mlu:
        device = 'mlu:{0}'.format(os.getenv('FLAGS_selected_mlus', 0))
X
xiaoting 已提交
676 677 678
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
679
    check_device(use_gpu, use_xpu, use_npu, use_mlu)
X
xiaoting 已提交
680

W
WenmuZhou 已提交
681
    device = paddle.set_device(device)
D
dyning 已提交
682

D
dyning 已提交
683
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
684

685 686
    loggers = []

687
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
688
        save_model_dir = config['Global']['save_model_dir']
L
Lin Manhui 已提交
689
        vdl_writer_path = save_model_dir
A
andyjpaddle 已提交
690
        log_writer = VDLLogger(vdl_writer_path)
691
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
692 693
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
694 695 696 697 698 699 700 701
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
702
        loggers.append(log_writer)
D
dyning 已提交
703
    else:
704
        log_writer = None
D
dyning 已提交
705
    print_dict(config, logger)
706 707 708 709 710 711

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
712 713
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
714
    return config, device, logger, log_writer