program.py 25.9 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27
import paddle
import paddle.distributed as dist
from tqdm import tqdm
X
xiaoting 已提交
28 29
import cv2
import numpy as np
W
WenmuZhou 已提交
30 31
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
32 33
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
34
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
35
from ppocr.utils.logging import get_logger
36
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
37
from ppocr.utils import profiler
D
dyning 已提交
38
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
39

D
dyning 已提交
40

L
LDOUBLEV 已提交
41 42 43 44 45 46 47
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
53 54
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
55
        )
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
84 85
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
86 87


88
def merge_config(config, opts):
L
LDOUBLEV 已提交
89 90 91 92 93 94
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
95
    for key, value in opts.items():
L
LDOUBLEV 已提交
96
        if "." not in key:
97 98
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
99
            else:
100
                config[key] = value
L
LDOUBLEV 已提交
101 102
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
103
            assert (
104
                sub_keys[0] in config
105 106
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
107 108
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
109 110 111 112 113
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
114
    return config
L
LDOUBLEV 已提交
115 116


117
def check_device(use_gpu, use_xpu=False, use_npu=False, use_mlu=False):
L
LDOUBLEV 已提交
118 119 120 121
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
122 123 124 125
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
126 127 128
          "model on CPU"

    try:
X
xiaoting 已提交
129 130
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
131
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
132 133 134 135
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
136
            sys.exit(1)
137 138
        if use_npu and not paddle.device.is_compiled_with_npu():
            print(err.format("use_npu", "npu", "npu", "use_npu"))
139
            sys.exit(1)
140 141 142
        if use_mlu and not paddle.device.is_compiled_with_mlu():
            print(err.format("use_mlu", "mlu", "mlu", "use_mlu"))
            sys.exit(1)
143 144 145
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
146

文幕地方's avatar
文幕地方 已提交
147 148 149 150 151
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
152 153
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
154 155 156 157 158 159
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
160 161 162
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, paddle.Tensor):
163
        preds = preds.astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
164
    return preds
165

文幕地方's avatar
文幕地方 已提交
166

W
WenmuZhou 已提交
167
def train(config,
D
dyning 已提交
168 169 170
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
171 172 173 174 175 176 177 178
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
179
          log_writer=None,
文幕地方's avatar
文幕地方 已提交
180
          scaler=None,
文幕地方's avatar
文幕地方 已提交
181 182
          amp_level='O2',
          amp_custom_black_list=[]):
W
WenmuZhou 已提交
183 184
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
185
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
186 187 188 189
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
190
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
191

D
dyning 已提交
192
    global_step = 0
193 194
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
195 196 197 198
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
199 200
        if len(valid_dataloader) == 0:
            logger.info(
201 202
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
203 204
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
205
        logger.info(
206 207
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
208
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
209 210
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
211 212
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
213 214 215 216
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
217
    model_average = False
W
WenmuZhou 已提交
218 219
    model.train()

T
tink2123 已提交
220
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
221
    extra_input_models = [
222
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SVTR_LCNet", "SPIN", "VisionLAN",
Z
zhiminzhang0830 已提交
223
        "RobustScanner", "RFL", 'DRRG', 'SATRN'
A
andyjpaddle 已提交
224
    ]
A
andyjpaddle 已提交
225
    extra_input = False
A
andyjpaddle 已提交
226
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
227 228 229
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
230 231
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
232
    try:
L
fix bug  
LDOUBLEV 已提交
233
        model_type = config['Architecture']['model_type']
234
    except:
L
fix bug  
LDOUBLEV 已提交
235
        model_type = None
A
andyjpaddle 已提交
236

T
tink2123 已提交
237
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
238

239 240 241 242
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
243 244
    train_reader_cost = 0.0
    train_batch_cost = 0.0
245
    reader_start = time.time()
246
    eta_meter = AverageMeter()
247 248 249

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
250

T
tink2123 已提交
251
    for epoch in range(start_epoch, epoch_num + 1):
252 253 254 255 256
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
X
xiaoting 已提交
257

W
WenmuZhou 已提交
258
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
259
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
260
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
261
            if idx >= max_iter:
W
WenmuZhou 已提交
262 263 264
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
265
            if use_srn:
T
tink2123 已提交
266
                model_average = True
S
stephon 已提交
267 268
            # use amp
            if scaler:
269 270 271
                with paddle.amp.auto_cast(
                        level=amp_level,
                        custom_black_list=amp_custom_black_list):
S
stephon 已提交
272 273
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
274
                    elif model_type in ["kie"]:
A
andyjpaddle 已提交
275
                        preds = model(batch)
D
dorren 已提交
276 277
                    elif algorithm in ['CAN']:
                        preds = model(batch[:3])
S
stephon 已提交
278 279
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
280 281 282 283 284 285
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
286
            else:
S
stephon 已提交
287 288
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
289
                elif model_type in ["kie", 'sr']:
L
LDOUBLEV 已提交
290
                    preds = model(batch)
D
dorren 已提交
291 292
                elif algorithm in ['CAN']:
                    preds = model(batch[:3])
S
stephon 已提交
293 294
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
295 296
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
297 298
                avg_loss.backward()
                optimizer.step()
X
xiaoting 已提交
299

W
WenmuZhou 已提交
300
            optimizer.clear_grad()
W
WenmuZhou 已提交
301

302 303
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
X
xiaoting 已提交
304
                if model_type in ['kie', 'sr']:
305
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
306 307 308
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
D
dorren 已提交
309 310 311
                elif algorithm in ['CAN']:
                    model_type = 'can'
                    eval_class(preds[0], batch[2:], epoch_reset=(idx == 0))
312
                else:
A
andyjpaddle 已提交
313 314 315 316
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
andyjpaddle 已提交
317 318 319
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
320 321
                    else:
                        post_result = post_process_class(preds, batch[1])
322 323 324 325
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

326 327 328
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
329
            global_step += 1
文幕地方's avatar
文幕地方 已提交
330
            total_samples += len(images)
W
WenmuZhou 已提交
331

D
dyning 已提交
332 333
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
334 335 336 337 338 339

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

340
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
341 342
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
343

344 345 346
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
347
                logs = train_stats.log()
L
LDOUBLEV 已提交
348

349 350 351 352
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
X
xiaoting 已提交
353 354
                    '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                    'ips: {:.5f} samples/s, eta: {}'.format(
355 356 357 358 359
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
360
                logger.info(strs)
361

文幕地方's avatar
文幕地方 已提交
362
                total_samples = 0
363 364
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
365 366
            # eval
            if global_step > start_eval_step and \
367 368
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
369 370 371 372 373 374 375
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
376 377 378 379 380
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
381
                    model_type,
文幕地方's avatar
文幕地方 已提交
382
                    extra_input=extra_input,
文幕地方's avatar
文幕地方 已提交
383 384 385
                    scaler=scaler,
                    amp_level=amp_level,
                    amp_custom_black_list=amp_custom_black_list)
L
LDOUBLEV 已提交
386 387 388
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
389 390

                # logger metric
391
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
392 393
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
394

L
LDOUBLEV 已提交
395
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
396
                        main_indicator]:
L
LDOUBLEV 已提交
397
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
398 399 400 401 402 403
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
404
                        config,
W
WenmuZhou 已提交
405 406 407
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
408 409
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
410
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
411 412 413 414
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
415
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
416 417 418 419 420 421 422 423 424 425 426 427
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
428

文幕地方's avatar
文幕地方 已提交
429
            reader_start = time.time()
W
WenmuZhou 已提交
430 431 432 433 434 435
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
436
                config,
W
WenmuZhou 已提交
437 438 439
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
440 441
                epoch=epoch,
                global_step=global_step)
442

443 444
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
445

W
WenmuZhou 已提交
446 447 448 449 450 451
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
452
                config,
W
WenmuZhou 已提交
453 454 455
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
456 457
                epoch=epoch,
                global_step=global_step)
458
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
459 460
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
461

L
LDOUBLEV 已提交
462
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
463 464
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
465 466
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
467 468 469
    return


M
refine  
MissPenguin 已提交
470 471 472 473
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
474
         model_type=None,
文幕地方's avatar
文幕地方 已提交
475
         extra_input=False,
文幕地方's avatar
文幕地方 已提交
476 477
         scaler=None,
         amp_level='O2',
478
         amp_custom_black_list=[]):
W
WenmuZhou 已提交
479 480 481 482
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
483 484 485 486 487
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
488 489
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
X
xiaoting 已提交
490
        sum_images = 0
W
WenmuZhou 已提交
491
        for idx, batch in enumerate(valid_dataloader):
492
            if idx >= max_iter:
W
WenmuZhou 已提交
493
                break
W
fix bug  
WenmuZhou 已提交
494
            images = batch[0]
W
WenmuZhou 已提交
495
            start = time.time()
文幕地方's avatar
文幕地方 已提交
496 497 498

            # use amp
            if scaler:
499 500 501
                with paddle.amp.auto_cast(
                        level=amp_level,
                        custom_black_list=amp_custom_black_list):
文幕地方's avatar
文幕地方 已提交
502 503
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
504
                    elif model_type in ["kie"]:
文幕地方's avatar
文幕地方 已提交
505
                        preds = model(batch)
D
dorren 已提交
506 507
                    elif model_type in ['can']:
                        preds = model(batch[:3])
X
xiaoting 已提交
508 509 510 511
                    elif model_type in ['sr']:
                        preds = model(batch)
                        sr_img = preds["sr_img"]
                        lr_img = preds["lr_img"]
文幕地方's avatar
文幕地方 已提交
512 513
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
514
                preds = to_float32(preds)
X
xiaoting 已提交
515
            else:
文幕地方's avatar
文幕地方 已提交
516 517
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
518
                elif model_type in ["kie"]:
文幕地方's avatar
文幕地方 已提交
519
                    preds = model(batch)
D
dorren 已提交
520 521
                elif model_type in ['can']:
                    preds = model(batch[:3])
X
xiaoting 已提交
522 523 524 525
                elif model_type in ['sr']:
                    preds = model(batch)
                    sr_img = preds["sr_img"]
                    lr_img = preds["lr_img"]
文幕地方's avatar
文幕地方 已提交
526 527 528
                else:
                    preds = model(images)

529 530 531 532 533 534
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
535 536 537
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
538 539 540 541 542 543
            if model_type in ['table', 'kie']:
                if post_process_class is None:
                    eval_class(preds, batch_numpy)
                else:
                    post_result = post_process_class(preds, batch_numpy)
                    eval_class(post_result, batch_numpy)
X
xiaoting 已提交
544 545
            elif model_type in ['sr']:
                eval_class(preds, batch_numpy)
D
dorren 已提交
546
            elif model_type in ['can']:
547
                eval_class(preds[0], batch_numpy[2:], epoch_reset=(idx == 0))
M
MissPenguin 已提交
548
            else:
549 550
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
551

W
fix bug  
WenmuZhou 已提交
552
            pbar.update(1)
W
WenmuZhou 已提交
553
            total_frame += len(images)
X
xiaoting 已提交
554
            sum_images += 1
L
LDOUBLEV 已提交
555 556
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
557

W
fix bug  
WenmuZhou 已提交
558
    pbar.close()
W
WenmuZhou 已提交
559
    model.train()
L
LDOUBLEV 已提交
560 561
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
562

T
tink2123 已提交
563

B
Bin Lu 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


613
def preprocess(is_train=False):
L
licx 已提交
614
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
615
    profiler_options = FLAGS.profiler_options
L
licx 已提交
616
    config = load_config(FLAGS.config)
617
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
618
    profile_dic = {"profiler_options": FLAGS.profiler_options}
619
    config = merge_config(config, profile_dic)
L
licx 已提交
620

W
WenmuZhou 已提交
621 622 623 624 625 626 627 628 629 630
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
631
    logger = get_logger(log_file=log_file)
L
licx 已提交
632 633

    # check if set use_gpu=True in paddlepaddle cpu version
634
    use_gpu = config['Global'].get('use_gpu', False)
X
xiaoting 已提交
635
    use_xpu = config['Global'].get('use_xpu', False)
636
    use_npu = config['Global'].get('use_npu', False)
637
    use_mlu = config['Global'].get('use_mlu', False)
638

W
WenmuZhou 已提交
639 640
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
641
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
642
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
643
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
644 645 646
        'SVTR', 'SVTR_LCNet', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN',
        'VisionLAN', 'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL', 'DRRG',
        'CAN', 'Telescope', 'SATRN'
W
WenmuZhou 已提交
647
    ]
L
licx 已提交
648

649
    if use_xpu:
X
xiaoting 已提交
650
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
651 652
    elif use_npu:
        device = 'npu:{0}'.format(os.getenv('FLAGS_selected_npus', 0))
653 654
    elif use_mlu:
        device = 'mlu:{0}'.format(os.getenv('FLAGS_selected_mlus', 0))
X
xiaoting 已提交
655 656 657
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
658
    check_device(use_gpu, use_xpu, use_npu, use_mlu)
X
xiaoting 已提交
659

W
WenmuZhou 已提交
660
    device = paddle.set_device(device)
D
dyning 已提交
661

D
dyning 已提交
662
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
663

664 665
    loggers = []

666
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
667
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
668
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
andyjpaddle 已提交
669
        log_writer = VDLLogger(vdl_writer_path)
670
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
671 672
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
673 674 675 676 677 678 679 680
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
681
        loggers.append(log_writer)
D
dyning 已提交
682
    else:
683
        log_writer = None
D
dyning 已提交
684
    print_dict(config, logger)
685 686 687 688 689 690

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
691 692
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
693
    return config, device, logger, log_writer