program.py 21.7 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27 28 29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
33
from ppocr.utils.logging import get_logger
34
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
35
from ppocr.utils import profiler
D
dyning 已提交
36
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48 49 50
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
51 52
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
53
        )
L
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
82 83
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
84 85


86
def merge_config(config, opts):
L
LDOUBLEV 已提交
87 88 89 90 91 92
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
93
    for key, value in opts.items():
L
LDOUBLEV 已提交
94
        if "." not in key:
95 96
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
97
            else:
98
                config[key] = value
L
LDOUBLEV 已提交
99 100
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
101
            assert (
102
                sub_keys[0] in config
103 104
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
105 106
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
107 108 109 110 111
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
112
    return config
L
LDOUBLEV 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
W
WenmuZhou 已提交
127
        if use_gpu and not paddle.is_compiled_with_cuda():
W
WenmuZhou 已提交
128
            print(err)
L
LDOUBLEV 已提交
129 130 131 132 133
            sys.exit(1)
    except Exception as e:
        pass


134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
153
def train(config,
D
dyning 已提交
154 155 156
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
157 158 159 160 161 162 163 164
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
165
          log_writer=None,
S
stephon 已提交
166
          scaler=None):
W
WenmuZhou 已提交
167 168
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
169
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
170 171 172 173
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
174
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
175

D
dyning 已提交
176
    global_step = 0
177 178
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
179 180 181 182
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
183 184
        if len(valid_dataloader) == 0:
            logger.info(
185 186
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
187 188
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
189
        logger.info(
190 191
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
192
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
193 194
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
195 196
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
197 198 199 200
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
201
    model_average = False
W
WenmuZhou 已提交
202 203
    model.train()

T
tink2123 已提交
204
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
205
    extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR"]
A
andyjpaddle 已提交
206
    extra_input = False
A
andyjpaddle 已提交
207
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
208 209 210
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
211 212
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
213
    try:
L
fix bug  
LDOUBLEV 已提交
214
        model_type = config['Architecture']['model_type']
215
    except:
L
fix bug  
LDOUBLEV 已提交
216
        model_type = None
A
andyjpaddle 已提交
217

T
tink2123 已提交
218
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
219

220 221 222 223
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
224 225
    train_reader_cost = 0.0
    train_batch_cost = 0.0
226
    reader_start = time.time()
227
    eta_meter = AverageMeter()
228 229 230

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
231

T
tink2123 已提交
232
    for epoch in range(start_epoch, epoch_num + 1):
233 234 235 236 237
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
238
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
239
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
240
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
241
            if idx >= max_iter:
W
WenmuZhou 已提交
242 243 244
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
245
            if use_srn:
T
tink2123 已提交
246
                model_average = True
S
stephon 已提交
247 248 249 250 251 252 253 254

            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
T
tink2123 已提交
255
            else:
S
stephon 已提交
256 257
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
258
                elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
259
                    preds = model(batch)
S
stephon 已提交
260 261
                else:
                    preds = model(images)
262

W
WenmuZhou 已提交
263 264
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
S
stephon 已提交
265 266 267 268 269 270 271 272

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
273
            optimizer.clear_grad()
W
WenmuZhou 已提交
274

275 276 277 278 279
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
                if model_type in ['table', 'kie']:
                    eval_class(preds, batch)
                else:
A
andyjpaddle 已提交
280 281 282 283 284 285
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
                    else:
                        post_result = post_process_class(preds, batch[1])
286 287 288 289
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

290 291 292
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
293
            global_step += 1
文幕地方's avatar
文幕地方 已提交
294
            total_samples += len(images)
W
WenmuZhou 已提交
295

D
dyning 已提交
296 297
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
298 299 300 301 302 303

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

304 305
            if log_writer is not None and dist.get_rank() == 0:
                log_writer.log_metrics(metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
306

307 308 309
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
310
                logs = train_stats.log()
L
LDOUBLEV 已提交
311

312 313 314 315 316
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
L
LDOUBLEV 已提交
317
                       'ips: {:.5f} samples/s, eta: {}'.format(
318 319 320 321 322
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
323
                logger.info(strs)
324

文幕地方's avatar
文幕地方 已提交
325
                total_samples = 0
326 327
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
328 329
            # eval
            if global_step > start_eval_step and \
330 331
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
332 333 334 335 336 337 338
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
339 340 341 342 343
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
344
                    model_type,
T
tink2123 已提交
345
                    extra_input=extra_input)
L
LDOUBLEV 已提交
346 347 348
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
349 350

                # logger metric
351 352 353
                if log_writer is not None:
                    log_writer.log_metrics(metrics=cur_metric, prefix="EVAL", step=global_step)

L
LDOUBLEV 已提交
354
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
355
                        main_indicator]:
L
LDOUBLEV 已提交
356
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
357 358 359 360 361 362
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
363
                        config,
W
WenmuZhou 已提交
364 365 366
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
367 368
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
369
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
370 371 372 373
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
374 375 376
                if log_writer is not None:
                    log_writer.log_metrics(metrics={
                        "best_{}".format(main_indicator): best_model_dict[main_indicator]
377 378 379
                        }, prefix="EVAL", step=global_step)
                    
                    log_writer.log_model(is_best=True, prefix="best_accuracy", metadata=best_model_dict)
380

文幕地方's avatar
文幕地方 已提交
381
            reader_start = time.time()
W
WenmuZhou 已提交
382 383 384 385 386 387
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
388
                config,
W
WenmuZhou 已提交
389 390 391
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
392 393
                epoch=epoch,
                global_step=global_step)
394

395 396
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
397

W
WenmuZhou 已提交
398 399 400 401 402 403
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
404
                config,
W
WenmuZhou 已提交
405 406 407
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
408 409
                epoch=epoch,
                global_step=global_step)
410 411
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix='iter_epoch_{}'.format(epoch))
412

L
LDOUBLEV 已提交
413
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
414 415
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
416 417
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
418 419 420
    return


M
refine  
MissPenguin 已提交
421 422 423 424
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
425
         model_type=None,
T
tink2123 已提交
426
         extra_input=False):
W
WenmuZhou 已提交
427 428 429 430
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
431 432 433 434 435
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
436 437
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
438
        for idx, batch in enumerate(valid_dataloader):
439
            if idx >= max_iter:
W
WenmuZhou 已提交
440
                break
W
fix bug  
WenmuZhou 已提交
441
            images = batch[0]
W
WenmuZhou 已提交
442
            start = time.time()
T
tink2123 已提交
443
            if model_type == 'table' or extra_input:
M
refine  
MissPenguin 已提交
444
                preds = model(images, data=batch[1:])
445
            elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
446
                preds = model(batch)
X
xiaoting 已提交
447
            else:
L
LDOUBLEV 已提交
448
                preds = model(images)
449 450 451 452 453 454 455

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
456 457 458
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
L
LDOUBLEV 已提交
459
            if model_type in ['table', 'kie']:
460 461 462 463
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
M
MissPenguin 已提交
464
            else:
465 466
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
467

W
fix bug  
WenmuZhou 已提交
468
            pbar.update(1)
W
WenmuZhou 已提交
469
            total_frame += len(images)
L
LDOUBLEV 已提交
470 471
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
472

W
fix bug  
WenmuZhou 已提交
473
    pbar.close()
W
WenmuZhou 已提交
474
    model.train()
L
LDOUBLEV 已提交
475 476
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
477

T
tink2123 已提交
478

B
Bin Lu 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


528
def preprocess(is_train=False):
L
licx 已提交
529
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
530
    profiler_options = FLAGS.profiler_options
L
licx 已提交
531
    config = load_config(FLAGS.config)
532
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
533
    profile_dic = {"profiler_options": FLAGS.profiler_options}
534
    config = merge_config(config, profile_dic)
L
licx 已提交
535

W
WenmuZhou 已提交
536 537 538 539 540 541 542 543 544 545
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
546
    logger = get_logger(log_file=log_file)
L
licx 已提交
547 548 549 550 551

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

552 553 554 555 556 557
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
558 559
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
560
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
561
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
A
andyjpaddle 已提交
562
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE', 'SVTR'
W
WenmuZhou 已提交
563
    ]
L
licx 已提交
564

565 566 567 568 569
    device = 'cpu'
    if use_gpu:
        device = 'gpu:{}'.format(dist.ParallelEnv().dev_id)
    if use_xpu:
        device = 'xpu'
W
WenmuZhou 已提交
570
    device = paddle.set_device(device)
D
dyning 已提交
571

D
dyning 已提交
572
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
573

574 575
    loggers = []

576
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
577
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
578
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
579
        log_writer = VDLLogger(save_model_dir)
580
        loggers.append(log_writer)
581
    if ('use_wandb' in config['Global'] and config['Global']['use_wandb']) or 'wandb' in config:
582 583 584 585 586 587 588 589
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
590
        loggers.append(log_writer)
D
dyning 已提交
591
    else:
592
        log_writer = None
D
dyning 已提交
593
    print_dict(config, logger)
594 595 596 597 598 599

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
600 601
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
602
    return config, device, logger, log_writer