program.py 26.5 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27
import paddle
import paddle.distributed as dist
from tqdm import tqdm
X
xiaoting 已提交
28 29
import cv2
import numpy as np
W
WenmuZhou 已提交
30 31
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
32 33
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
34
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
35
from ppocr.utils.logging import get_logger
36
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
37
from ppocr.utils import profiler
D
dyning 已提交
38
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
39

D
dyning 已提交
40

L
LDOUBLEV 已提交
41 42 43 44 45 46 47
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
53 54
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
55
        )
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
84 85
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
86 87


88
def merge_config(config, opts):
L
LDOUBLEV 已提交
89 90 91 92 93 94
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
95
    for key, value in opts.items():
L
LDOUBLEV 已提交
96
        if "." not in key:
97 98
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
99
            else:
100
                config[key] = value
L
LDOUBLEV 已提交
101 102
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
103
            assert (
104
                sub_keys[0] in config
105 106
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
107 108
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
109 110 111 112 113
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
114
    return config
L
LDOUBLEV 已提交
115 116


117
def check_device(use_gpu, use_xpu=False, use_npu=False, use_mlu=False):
L
LDOUBLEV 已提交
118 119 120 121
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
122 123 124 125
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
126 127 128
          "model on CPU"

    try:
X
xiaoting 已提交
129 130
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
131
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
132 133 134 135
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
136
            sys.exit(1)
D
duanyanhui 已提交
137 138 139 140 141 142 143 144 145 146 147 148
        if use_npu:
            if int(paddle.version.major) != 0 and int(
                    paddle.version.major) <= 2 and int(
                        paddle.version.minor) <= 4:
                if not paddle.device.is_compiled_with_npu():
                    print(err.format("use_npu", "npu", "npu", "use_npu"))
                    sys.exit(1)
            # is_compiled_with_npu() has been updated after paddle-2.4
            else:
                if not paddle.device.is_compiled_with_custom_device("npu"):
                    print(err.format("use_npu", "npu", "npu", "use_npu"))
                    sys.exit(1)
149 150 151
        if use_mlu and not paddle.device.is_compiled_with_mlu():
            print(err.format("use_mlu", "mlu", "mlu", "use_mlu"))
            sys.exit(1)
152 153 154
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
155

文幕地方's avatar
文幕地方 已提交
156 157 158 159 160
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
161 162
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
163 164 165 166 167 168
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
169 170 171
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, paddle.Tensor):
172
        preds = preds.astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
173
    return preds
174

文幕地方's avatar
文幕地方 已提交
175

W
WenmuZhou 已提交
176
def train(config,
D
dyning 已提交
177 178 179
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
180 181 182 183 184 185 186 187
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
188
          log_writer=None,
文幕地方's avatar
文幕地方 已提交
189
          scaler=None,
文幕地方's avatar
文幕地方 已提交
190
          amp_level='O2',
Z
Zhang Ting 已提交
191 192
          amp_custom_black_list=[],
          amp_custom_white_list=[]):
W
WenmuZhou 已提交
193 194
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
195
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
196 197 198 199
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
200
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
201

D
dyning 已提交
202
    global_step = 0
203 204
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
205 206 207 208
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
209 210
        if len(valid_dataloader) == 0:
            logger.info(
211 212
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
213 214
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
215
        logger.info(
216 217
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
218
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
219 220
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
221 222
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
223 224 225 226
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
227
    model_average = False
W
WenmuZhou 已提交
228 229
    model.train()

T
tink2123 已提交
230
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
231
    extra_input_models = [
232
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SVTR_LCNet", "SPIN", "VisionLAN",
T
topduke 已提交
233
        "RobustScanner", "RFL", 'DRRG', 'SATRN', 'SVTR_HGNet'
A
andyjpaddle 已提交
234
    ]
A
andyjpaddle 已提交
235
    extra_input = False
A
andyjpaddle 已提交
236
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
237 238 239
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
240 241
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
242
    try:
L
fix bug  
LDOUBLEV 已提交
243
        model_type = config['Architecture']['model_type']
244
    except:
L
fix bug  
LDOUBLEV 已提交
245
        model_type = None
A
andyjpaddle 已提交
246

T
tink2123 已提交
247
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
248

249 250 251 252
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
253 254
    train_reader_cost = 0.0
    train_batch_cost = 0.0
255
    reader_start = time.time()
256
    eta_meter = AverageMeter()
257 258 259

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
260

T
tink2123 已提交
261
    for epoch in range(start_epoch, epoch_num + 1):
262 263 264 265 266
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
X
xiaoting 已提交
267

W
WenmuZhou 已提交
268
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
269
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
270
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
271
            if idx >= max_iter:
W
WenmuZhou 已提交
272 273 274
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
275
            if use_srn:
T
tink2123 已提交
276
                model_average = True
S
stephon 已提交
277 278
            # use amp
            if scaler:
279 280
                with paddle.amp.auto_cast(
                        level=amp_level,
Z
Zhang Ting 已提交
281 282
                        custom_black_list=amp_custom_black_list,
                        custom_white_list=amp_custom_white_list):
S
stephon 已提交
283 284
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
285
                    elif model_type in ["kie"]:
A
andyjpaddle 已提交
286
                        preds = model(batch)
D
dorren 已提交
287 288
                    elif algorithm in ['CAN']:
                        preds = model(batch[:3])
S
stephon 已提交
289 290
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
291 292 293 294 295 296
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
297
            else:
S
stephon 已提交
298 299
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
300
                elif model_type in ["kie", 'sr']:
L
LDOUBLEV 已提交
301
                    preds = model(batch)
D
dorren 已提交
302 303
                elif algorithm in ['CAN']:
                    preds = model(batch[:3])
S
stephon 已提交
304 305
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
306 307
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
308 309
                avg_loss.backward()
                optimizer.step()
X
xiaoting 已提交
310

W
WenmuZhou 已提交
311
            optimizer.clear_grad()
W
WenmuZhou 已提交
312

313 314
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
X
xiaoting 已提交
315
                if model_type in ['kie', 'sr']:
316
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
317 318 319
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
D
dorren 已提交
320 321 322
                elif algorithm in ['CAN']:
                    model_type = 'can'
                    eval_class(preds[0], batch[2:], epoch_reset=(idx == 0))
323
                else:
A
andyjpaddle 已提交
324 325 326 327
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
andyjpaddle 已提交
328 329 330
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
331 332
                    else:
                        post_result = post_process_class(preds, batch[1])
333 334 335 336
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

337 338 339
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
340
            global_step += 1
文幕地方's avatar
文幕地方 已提交
341
            total_samples += len(images)
W
WenmuZhou 已提交
342

D
dyning 已提交
343 344
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
345 346 347 348 349 350

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

351
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
352 353
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
354

355 356 357
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
358
                logs = train_stats.log()
L
LDOUBLEV 已提交
359

360 361 362 363
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
X
xiaoting 已提交
364 365
                    '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                    'ips: {:.5f} samples/s, eta: {}'.format(
366 367 368 369 370
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
371
                logger.info(strs)
372

文幕地方's avatar
文幕地方 已提交
373
                total_samples = 0
374 375
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
376 377
            # eval
            if global_step > start_eval_step and \
378 379
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
380 381 382 383 384 385 386
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
387 388 389 390 391
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
392
                    model_type,
文幕地方's avatar
文幕地方 已提交
393
                    extra_input=extra_input,
文幕地方's avatar
文幕地方 已提交
394 395 396
                    scaler=scaler,
                    amp_level=amp_level,
                    amp_custom_black_list=amp_custom_black_list)
L
LDOUBLEV 已提交
397 398 399
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
400 401

                # logger metric
402
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
403 404
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
405

L
LDOUBLEV 已提交
406
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
407
                        main_indicator]:
L
LDOUBLEV 已提交
408
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
409 410 411 412 413 414
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
415
                        config,
W
WenmuZhou 已提交
416 417 418
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
419 420
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
421
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
422 423 424 425
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
426
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
427 428 429 430 431 432 433 434 435 436 437 438
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
439

文幕地方's avatar
文幕地方 已提交
440
            reader_start = time.time()
W
WenmuZhou 已提交
441 442 443 444 445 446
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
447
                config,
W
WenmuZhou 已提交
448 449 450
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
451 452
                epoch=epoch,
                global_step=global_step)
453

454 455
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
456

W
WenmuZhou 已提交
457 458 459 460 461 462
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
463
                config,
W
WenmuZhou 已提交
464 465 466
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
467 468
                epoch=epoch,
                global_step=global_step)
469
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
470 471
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
472

L
LDOUBLEV 已提交
473
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
474 475
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
476 477
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
478 479 480
    return


M
refine  
MissPenguin 已提交
481 482 483 484
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
485
         model_type=None,
文幕地方's avatar
文幕地方 已提交
486
         extra_input=False,
文幕地方's avatar
文幕地方 已提交
487 488
         scaler=None,
         amp_level='O2',
489
         amp_custom_black_list=[]):
W
WenmuZhou 已提交
490 491 492 493
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
494 495 496 497 498
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
499 500
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
X
xiaoting 已提交
501
        sum_images = 0
W
WenmuZhou 已提交
502
        for idx, batch in enumerate(valid_dataloader):
503
            if idx >= max_iter:
W
WenmuZhou 已提交
504
                break
W
fix bug  
WenmuZhou 已提交
505
            images = batch[0]
W
WenmuZhou 已提交
506
            start = time.time()
文幕地方's avatar
文幕地方 已提交
507 508 509

            # use amp
            if scaler:
510 511 512
                with paddle.amp.auto_cast(
                        level=amp_level,
                        custom_black_list=amp_custom_black_list):
文幕地方's avatar
文幕地方 已提交
513 514
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
515
                    elif model_type in ["kie"]:
文幕地方's avatar
文幕地方 已提交
516
                        preds = model(batch)
D
dorren 已提交
517 518
                    elif model_type in ['can']:
                        preds = model(batch[:3])
X
xiaoting 已提交
519 520 521 522
                    elif model_type in ['sr']:
                        preds = model(batch)
                        sr_img = preds["sr_img"]
                        lr_img = preds["lr_img"]
文幕地方's avatar
文幕地方 已提交
523 524
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
525
                preds = to_float32(preds)
X
xiaoting 已提交
526
            else:
文幕地方's avatar
文幕地方 已提交
527 528
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
529
                elif model_type in ["kie"]:
文幕地方's avatar
文幕地方 已提交
530
                    preds = model(batch)
D
dorren 已提交
531 532
                elif model_type in ['can']:
                    preds = model(batch[:3])
X
xiaoting 已提交
533 534 535 536
                elif model_type in ['sr']:
                    preds = model(batch)
                    sr_img = preds["sr_img"]
                    lr_img = preds["lr_img"]
文幕地方's avatar
文幕地方 已提交
537 538 539
                else:
                    preds = model(images)

540 541 542 543 544 545
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
546 547 548
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
549 550 551 552 553 554
            if model_type in ['table', 'kie']:
                if post_process_class is None:
                    eval_class(preds, batch_numpy)
                else:
                    post_result = post_process_class(preds, batch_numpy)
                    eval_class(post_result, batch_numpy)
X
xiaoting 已提交
555 556
            elif model_type in ['sr']:
                eval_class(preds, batch_numpy)
D
dorren 已提交
557
            elif model_type in ['can']:
558
                eval_class(preds[0], batch_numpy[2:], epoch_reset=(idx == 0))
M
MissPenguin 已提交
559
            else:
560 561
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
562

W
fix bug  
WenmuZhou 已提交
563
            pbar.update(1)
W
WenmuZhou 已提交
564
            total_frame += len(images)
X
xiaoting 已提交
565
            sum_images += 1
L
LDOUBLEV 已提交
566 567
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
568

W
fix bug  
WenmuZhou 已提交
569
    pbar.close()
W
WenmuZhou 已提交
570
    model.train()
L
LDOUBLEV 已提交
571 572
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
573

T
tink2123 已提交
574

B
Bin Lu 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


624
def preprocess(is_train=False):
L
licx 已提交
625
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
626
    profiler_options = FLAGS.profiler_options
L
licx 已提交
627
    config = load_config(FLAGS.config)
628
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
629
    profile_dic = {"profiler_options": FLAGS.profiler_options}
630
    config = merge_config(config, profile_dic)
L
licx 已提交
631

W
WenmuZhou 已提交
632 633 634 635 636 637 638 639 640 641
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
642
    logger = get_logger(log_file=log_file)
L
licx 已提交
643 644

    # check if set use_gpu=True in paddlepaddle cpu version
645
    use_gpu = config['Global'].get('use_gpu', False)
X
xiaoting 已提交
646
    use_xpu = config['Global'].get('use_xpu', False)
647
    use_npu = config['Global'].get('use_npu', False)
648
    use_mlu = config['Global'].get('use_mlu', False)
649

W
WenmuZhou 已提交
650 651
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
652
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
653
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
654
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
655 656
        'SVTR', 'SVTR_LCNet', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN',
        'VisionLAN', 'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL', 'DRRG',
T
topduke 已提交
657
        'CAN', 'Telescope', 'SATRN', 'SVTR_HGNet'
W
WenmuZhou 已提交
658
    ]
L
licx 已提交
659

660
    if use_xpu:
X
xiaoting 已提交
661
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
662 663
    elif use_npu:
        device = 'npu:{0}'.format(os.getenv('FLAGS_selected_npus', 0))
664 665
    elif use_mlu:
        device = 'mlu:{0}'.format(os.getenv('FLAGS_selected_mlus', 0))
X
xiaoting 已提交
666 667 668
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
669
    check_device(use_gpu, use_xpu, use_npu, use_mlu)
X
xiaoting 已提交
670

W
WenmuZhou 已提交
671
    device = paddle.set_device(device)
D
dyning 已提交
672

D
dyning 已提交
673
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
674

675 676
    loggers = []

677
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
678
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
679
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
andyjpaddle 已提交
680
        log_writer = VDLLogger(vdl_writer_path)
681
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
682 683
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
684 685 686 687 688 689 690 691
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
692
        loggers.append(log_writer)
D
dyning 已提交
693
    else:
694
        log_writer = None
D
dyning 已提交
695
    print_dict(config, logger)
696 697 698 699 700 701

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
702 703
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
704
    return config, device, logger, log_writer