utility.py 22.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

L
LDOUBLEV 已提交
27

28 29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
30 31


W
WenmuZhou 已提交
32
def init_args():
L
LDOUBLEV 已提交
33
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
34
    # params for prediction engine
L
LDOUBLEV 已提交
35 36 37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
38
    parser.add_argument("--min_subgraph_size", type=int, default=15)
L
LDOUBLEV 已提交
39
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
40
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
41

W
WenmuZhou 已提交
42
    # params for text detector
L
LDOUBLEV 已提交
43 44 45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
46 47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
48

W
WenmuZhou 已提交
49
    # DB parmas
L
LDOUBLEV 已提交
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
51 52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
53
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
56
    # EAST parmas
L
LDOUBLEV 已提交
57 58 59 60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
61
    # SAST parmas
L
licx 已提交
62 63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
64
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
65

W
WenmuZhou 已提交
66 67 68 69
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
W
WenmuZhou 已提交
70
    parser.add_argument("--det_pse_box_type", type=str, default='box')
W
WenmuZhou 已提交
71 72
    parser.add_argument("--det_pse_scale", type=int, default=1)

W
WenmuZhou 已提交
73
    # params for text recognizer
L
LDOUBLEV 已提交
74 75
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
76
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
L
LDOUBLEV 已提交
77
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
78
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
79 80 81 82
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
83 84
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
85
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
86
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
87

J
Jethong 已提交
88 89 90 91 92 93 94 95 96
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
97
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
98
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
littletomatodonkey's avatar
littletomatodonkey 已提交
99
    parser.add_argument("--e2e_pgnet_polygon", type=str2bool, default=True)
J
Jethong 已提交
100
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
101

W
WenmuZhou 已提交
102 103 104 105 106
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
107
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
108 109 110
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
111
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
112
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
113
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
114

L
LDOUBLEV 已提交
115
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
116
    parser.add_argument("--use_mp", type=str2bool, default=False)
117 118
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
119

littletomatodonkey's avatar
littletomatodonkey 已提交
120
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
121
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
122

W
WenmuZhou 已提交
123
    parser.add_argument("--show_log", type=str2bool, default=True)
W
WenmuZhou 已提交
124
    return parser
W
WenmuZhou 已提交
125

126

127
def parse_args():
W
WenmuZhou 已提交
128
    parser = init_args()
L
LDOUBLEV 已提交
129 130 131
    return parser.parse_args()


W
WenmuZhou 已提交
132 133 134 135 136
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
137
    elif mode == 'rec':
W
WenmuZhou 已提交
138
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
139 140
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
141 142
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
143 144 145 146

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
147 148
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
149
    if not os.path.exists(model_file_path):
L
LDOUBLEV 已提交
150
        raise ValueError("not find model file path {}".format(model_file_path))
W
WenmuZhou 已提交
151
    if not os.path.exists(params_file_path):
L
LDOUBLEV 已提交
152 153
        raise ValueError("not find params file path {}".format(
            params_file_path))
W
WenmuZhou 已提交
154

W
WenmuZhou 已提交
155
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
156

L
LDOUBLEV 已提交
157 158 159 160 161 162 163 164 165 166
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

W
WenmuZhou 已提交
167
    if args.use_gpu:
168 169 170 171 172
        gpu_id = get_infer_gpuid()
        if gpu_id is None:
            raise ValueError(
                "Not found GPU in current device. Please check your device or set args.use_gpu as False"
            )
W
WenmuZhou 已提交
173
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
174 175
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
D
Double_V 已提交
176
                precision_mode=precision,
L
LDOUBLEV 已提交
177
                max_batch_size=args.max_batch_size,
L
LDOUBLEV 已提交
178 179
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
L
LDOUBLEV 已提交
180
        if mode == "det":
L
LDOUBLEV 已提交
181 182
            min_input_shape = {
                "x": [1, 3, 50, 50],
F
fengshuai03 已提交
183 184
                "conv2d_92.tmp_0": [1, 120, 20, 20],
                "conv2d_91.tmp_0": [1, 24, 10, 10],
L
LDOUBLEV 已提交
185
                "conv2d_59.tmp_0": [1, 96, 20, 20],
F
fengshuai03 已提交
186 187 188 189 190 191
                "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                "conv2d_124.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
L
LDOUBLEV 已提交
192
                "elementwise_add_7": [1, 56, 2, 2],
F
fengshuai03 已提交
193
                "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
L
LDOUBLEV 已提交
194 195 196
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
F
fengshuai03 已提交
197 198
                "conv2d_92.tmp_0": [1, 120, 400, 400],
                "conv2d_91.tmp_0": [1, 24, 200, 200],
L
LDOUBLEV 已提交
199
                "conv2d_59.tmp_0": [1, 96, 400, 400],
F
fengshuai03 已提交
200
                "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
L
LDOUBLEV 已提交
201
                "conv2d_124.tmp_0": [1, 256, 400, 400],
F
fengshuai03 已提交
202 203 204 205
                "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
L
LDOUBLEV 已提交
206
                "elementwise_add_7": [1, 56, 400, 400],
F
fengshuai03 已提交
207
                "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
L
LDOUBLEV 已提交
208 209 210
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
F
fengshuai03 已提交
211 212
                "conv2d_92.tmp_0": [1, 120, 160, 160],
                "conv2d_91.tmp_0": [1, 24, 80, 80],
L
LDOUBLEV 已提交
213
                "conv2d_59.tmp_0": [1, 96, 160, 160],
F
fengshuai03 已提交
214 215
                "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
L
LDOUBLEV 已提交
216
                "conv2d_124.tmp_0": [1, 256, 160, 160],
F
fengshuai03 已提交
217 218 219
                "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
L
LDOUBLEV 已提交
220
                "elementwise_add_7": [1, 56, 40, 40],
F
fengshuai03 已提交
221
                "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
L
LDOUBLEV 已提交
222
            }
F
fengshuai03 已提交
223
            min_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey 已提交
224 225 226 227
                "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
F
fengshuai03 已提交
228 229
            }
            max_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey 已提交
230 231 232 233
                "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
F
fengshuai03 已提交
234 235
            }
            opt_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey 已提交
236 237 238 239
                "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
F
fengshuai03 已提交
240 241 242 243
            }
            min_input_shape.update(min_pact_shape)
            max_input_shape.update(max_pact_shape)
            opt_input_shape.update(opt_pact_shape)
L
LDOUBLEV 已提交
244
        elif mode == "rec":
L
LDOUBLEV 已提交
245
            min_input_shape = {"x": [1, 3, 32, 10]}
L
LDOUBLEV 已提交
246 247 248
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
L
LDOUBLEV 已提交
249
            min_input_shape = {"x": [1, 3, 48, 10]}
L
LDOUBLEV 已提交
250 251
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
252 253 254 255
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
256 257 258
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
259 260
    else:
        config.disable_gpu()
L
LDOUBLEV 已提交
261 262 263
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
264
            # default cpu threads as 10
L
LDOUBLEV 已提交
265
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
266 267 268 269
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()
L
LDOUBLEV 已提交
270 271
            if args.precision == "fp16":
                config.enable_mkldnn_bfloat16()
L
LDOUBLEV 已提交
272 273
    # enable memory optim
    config.enable_memory_optim()
L
LDOUBLEV 已提交
274
    config.disable_glog_info()
W
WenmuZhou 已提交
275

W
WenmuZhou 已提交
276
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
W
WenmuZhou 已提交
277
    if mode == 'table':
W
WenmuZhou 已提交
278
        config.delete_pass("fc_fuse_pass")  # not supported for table
W
WenmuZhou 已提交
279
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
280
    config.switch_ir_optim(True)
281

W
WenmuZhou 已提交
282 283
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
284 285
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
286
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
287 288 289
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
290
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
291
        output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
292
    return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
293 294


L
LDOUBLEV 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308
def get_infer_gpuid():
    cmd = "nvidia-smi"
    res = os.popen(cmd).readlines()
    if len(res) == 0:
        return None
    cmd = "env | grep CUDA_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
325
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
326 327 328 329
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
330
    return src_im
L
LDOUBLEV 已提交
331 332


L
LDOUBLEV 已提交
333 334
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
335
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
336 337 338 339 340
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
341 342
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
343 344


W
WenmuZhou 已提交
345 346 347 348 349
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
350
             font_path="./doc/fonts/simfang.ttf"):
351 352 353
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
354
        image(Image|array): RGB image
355 356 357 358
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
359
        font_path: the path of font which is used to draw text
360 361 362
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
363 364
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
365 366 367 368
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
369
            continue
W
WenmuZhou 已提交
370
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
371
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
372
    if txts is not None:
L
LDOUBLEV 已提交
373
        img = np.array(resize_img(image, input_size=600))
374
        txt_img = text_visual(
W
WenmuZhou 已提交
375 376 377 378 379 380
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
381
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
382 383
        return img
    return image
384 385


W
WenmuZhou 已提交
386 387 388 389 390 391
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
392 393 394
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
395 396

    import random
L
LDOUBLEV 已提交
397

398 399 400
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
401 402 403
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
404 405
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
406
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
407 408 409 410 411 412 413 414 415 416
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
417 418
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
419
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
420 421 422
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
423 424
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
425 426 427
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
428
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
429 430
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
431 432 433 434
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
435 436 437
    return np.array(img_show)


438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
462 463 464 465 466 467
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
468 469 470 471 472 473 474
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
475
        font_path: the path of font which is used to draw text
476 477 478 479 480 481 482 483 484
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
485 486
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
487
        return blank_img, draw_txt
L
LDOUBLEV 已提交
488

489 490 491 492
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
493
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
494 495 496

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
497
    count, index = 1, 0
498 499
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
500
        if scores[idx] < threshold or math.isnan(scores[idx]):
501 502 503 504 505 506 507 508 509 510 511
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
512
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
513 514 515 516 517
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
518
            count += 1
519 520 521
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
522
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
523
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
524
        # whether add new blank img or not
L
LDOUBLEV 已提交
525
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
526 527 528
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
529
        count += 1
530 531 532 533 534 535
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
536 537


D
dyning 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


L
LDOUBLEV 已提交
592
if __name__ == '__main__':
L
LDOUBLEV 已提交
593
    pass