utility.py 20.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

27 28
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
29 30


W
WenmuZhou 已提交
31
def init_args():
L
LDOUBLEV 已提交
32
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
33
    # params for prediction engine
L
LDOUBLEV 已提交
34 35 36
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
37
    parser.add_argument("--min_subgraph_size", type=int, default=10)
L
LDOUBLEV 已提交
38
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
39
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
40

W
WenmuZhou 已提交
41
    # params for text detector
L
LDOUBLEV 已提交
42 43 44
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
45 46
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
47

W
WenmuZhou 已提交
48
    # DB parmas
L
LDOUBLEV 已提交
49 50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
W
WenmuZhou 已提交
51
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
L
LDOUBLEV 已提交
52
    parser.add_argument("--max_batch_size", type=int, default=10)
L
LDOUBLEV 已提交
53
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
55
    # EAST parmas
L
LDOUBLEV 已提交
56 57 58 59
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
60
    # SAST parmas
L
licx 已提交
61 62
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
63
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
64

W
WenmuZhou 已提交
65 66 67 68 69 70 71
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
    parser.add_argument("--det_pse_box_type", type=str, default='poly')
    parser.add_argument("--det_pse_scale", type=int, default=1)

W
WenmuZhou 已提交
72
    # params for text recognizer
L
LDOUBLEV 已提交
73 74
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
75 76
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
L
LDOUBLEV 已提交
77
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
78
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
79 80 81 82
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
83 84
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
85
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
86
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
87

J
Jethong 已提交
88 89 90 91 92 93 94 95 96
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
97
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
98
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
99
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
J
Jethong 已提交
100
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
101

W
WenmuZhou 已提交
102 103 104 105 106
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
107
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
108 109 110
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
111
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
112
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
113
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
114

L
LDOUBLEV 已提交
115
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
116
    parser.add_argument("--use_mp", type=str2bool, default=False)
117 118
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
119

L
LDOUBLEV 已提交
120 121
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
122

W
WenmuZhou 已提交
123
    parser.add_argument("--show_log", type=str2bool, default=True)
W
WenmuZhou 已提交
124
    return parser
W
WenmuZhou 已提交
125

126

127
def parse_args():
W
WenmuZhou 已提交
128
    parser = init_args()
L
LDOUBLEV 已提交
129 130 131
    return parser.parse_args()


W
WenmuZhou 已提交
132 133 134 135 136
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
137
    elif mode == 'rec':
W
WenmuZhou 已提交
138
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
139 140
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
141 142
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
143 144 145 146

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
147 148
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
149
    if not os.path.exists(model_file_path):
L
LDOUBLEV 已提交
150
        raise ValueError("not find model file path {}".format(model_file_path))
W
WenmuZhou 已提交
151
    if not os.path.exists(params_file_path):
L
LDOUBLEV 已提交
152 153
        raise ValueError("not find params file path {}".format(
            params_file_path))
W
WenmuZhou 已提交
154

W
WenmuZhou 已提交
155
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
156

L
LDOUBLEV 已提交
157 158 159 160 161 162 163 164 165 166
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

W
WenmuZhou 已提交
167 168
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
169 170
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
D
Double_V 已提交
171
                precision_mode=precision,
L
LDOUBLEV 已提交
172
                max_batch_size=args.max_batch_size,
L
LDOUBLEV 已提交
173 174
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
L
LDOUBLEV 已提交
175
        if mode == "det":
L
LDOUBLEV 已提交
176 177 178 179
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
L
LDOUBLEV 已提交
180
                "conv2d_59.tmp_0": [1, 96, 20, 20],
L
LDOUBLEV 已提交
181 182
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
L
LDOUBLEV 已提交
183
                "conv2d_124.tmp_0": [1, 96, 20, 20],
L
LDOUBLEV 已提交
184 185 186 187 188 189 190 191 192 193
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
L
LDOUBLEV 已提交
194
                "conv2d_59.tmp_0": [1, 96, 400, 400],
L
LDOUBLEV 已提交
195
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
L
LDOUBLEV 已提交
196
                "conv2d_124.tmp_0": [1, 256, 400, 400],
L
LDOUBLEV 已提交
197 198 199 200 201 202 203 204 205 206 207
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
L
LDOUBLEV 已提交
208
                "conv2d_59.tmp_0": [1, 96, 160, 160],
L
LDOUBLEV 已提交
209 210
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
L
LDOUBLEV 已提交
211
                "conv2d_124.tmp_0": [1, 256, 160, 160],
L
LDOUBLEV 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
226 227 228 229
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
230 231 232
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
233 234
    else:
        config.disable_gpu()
L
LDOUBLEV 已提交
235 236 237
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
238
            # default cpu threads as 10
L
LDOUBLEV 已提交
239
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
240 241 242 243 244
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

L
LDOUBLEV 已提交
245 246
    # enable memory optim
    config.enable_memory_optim()
L
LDOUBLEV 已提交
247
    #config.disable_glog_info()
W
WenmuZhou 已提交
248

W
WenmuZhou 已提交
249
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
W
WenmuZhou 已提交
250
    if mode == 'table':
W
WenmuZhou 已提交
251
        config.delete_pass("fc_fuse_pass")  # not supported for table
W
WenmuZhou 已提交
252
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
253
    config.switch_ir_optim(True)
254

W
WenmuZhou 已提交
255 256
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
257 258
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
259
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
260 261 262
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
263
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
264
        output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
265
    return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
266 267


J
Jethong 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
284
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
285 286 287 288
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
289
    return src_im
L
LDOUBLEV 已提交
290 291


L
LDOUBLEV 已提交
292 293
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
294
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
295 296 297 298 299
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
300 301
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
302 303


W
WenmuZhou 已提交
304 305 306 307 308
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
309
             font_path="./doc/fonts/simfang.ttf"):
310 311 312
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
313
        image(Image|array): RGB image
314 315 316 317
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
318
        font_path: the path of font which is used to draw text
319 320 321
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
322 323
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
324 325 326 327
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
328
            continue
W
WenmuZhou 已提交
329
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
330
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
331
    if txts is not None:
L
LDOUBLEV 已提交
332
        img = np.array(resize_img(image, input_size=600))
333
        txt_img = text_visual(
W
WenmuZhou 已提交
334 335 336 337 338 339
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
340
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
341 342
        return img
    return image
343 344


W
WenmuZhou 已提交
345 346 347 348 349 350
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
351 352 353
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
354 355

    import random
L
LDOUBLEV 已提交
356

357 358 359
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
360 361 362
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
363 364
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
365
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
366 367 368 369 370 371 372 373 374 375
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
376 377
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
378
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
379 380 381
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
382 383
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
384 385 386
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
387
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
388 389
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
390 391 392 393
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
394 395 396
    return np.array(img_show)


397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
421 422 423 424 425 426
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
427 428 429 430 431 432 433
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
434
        font_path: the path of font which is used to draw text
435 436 437 438 439 440 441 442 443
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
444 445
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
446
        return blank_img, draw_txt
L
LDOUBLEV 已提交
447

448 449 450 451
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
452
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
453 454 455

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
456
    count, index = 1, 0
457 458
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
459
        if scores[idx] < threshold or math.isnan(scores[idx]):
460 461 462 463 464 465 466 467 468 469 470
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
471
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
472 473 474 475 476
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
477
            count += 1
478 479 480
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
481
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
482
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
483
        # whether add new blank img or not
L
LDOUBLEV 已提交
484
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
485 486 487
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
488
        count += 1
489 490 491 492 493 494
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
495 496


D
dyning 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


L
LDOUBLEV 已提交
551
if __name__ == '__main__':
L
LDOUBLEV 已提交
552
    pass