utility.py 20.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

L
LDOUBLEV 已提交
27
logger = get_logger()
L
LDOUBLEV 已提交
28 29


30 31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
32 33


W
WenmuZhou 已提交
34
def init_args():
L
LDOUBLEV 已提交
35
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
36
    # params for prediction engine
L
LDOUBLEV 已提交
37 38 39
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
40
    parser.add_argument("--min_subgraph_size", type=int, default=3)
L
LDOUBLEV 已提交
41
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
42
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
43

W
WenmuZhou 已提交
44
    # params for text detector
L
LDOUBLEV 已提交
45 46 47
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
48 49
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
50

W
WenmuZhou 已提交
51
    # DB parmas
L
LDOUBLEV 已提交
52 53
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
W
WenmuZhou 已提交
54
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
L
LDOUBLEV 已提交
55
    parser.add_argument("--max_batch_size", type=int, default=10)
L
LDOUBLEV 已提交
56
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
57
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
58
    # EAST parmas
L
LDOUBLEV 已提交
59 60 61 62
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
63
    # SAST parmas
L
licx 已提交
64 65
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
66
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
67

W
WenmuZhou 已提交
68
    # params for text recognizer
L
LDOUBLEV 已提交
69 70
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
71 72
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
L
LDOUBLEV 已提交
73
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
74
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
75 76 77 78
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
79 80
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
81
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
82
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
83

J
Jethong 已提交
84 85 86 87 88 89 90 91 92
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
93
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
94
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
95
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
J
Jethong 已提交
96
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
97

W
WenmuZhou 已提交
98 99 100 101 102
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
103
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
104 105 106
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
107
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
108
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
109
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
110

L
LDOUBLEV 已提交
111
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
112
    parser.add_argument("--use_mp", type=str2bool, default=False)
113 114
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
115

L
LDOUBLEV 已提交
116 117
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
118

W
WenmuZhou 已提交
119
    parser.add_argument("--show_log", type=str2bool, default=True)
W
WenmuZhou 已提交
120
    return parser
W
WenmuZhou 已提交
121

122

123
def parse_args():
W
WenmuZhou 已提交
124
    parser = init_args()
L
LDOUBLEV 已提交
125 126 127
    return parser.parse_args()


W
WenmuZhou 已提交
128 129 130 131 132
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
133
    elif mode == 'rec':
W
WenmuZhou 已提交
134
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
135 136
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
137 138
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
139 140 141 142

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
143 144
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
145
    if not os.path.exists(model_file_path):
L
LDOUBLEV 已提交
146
        raise ValueError("not find model file path {}".format(model_file_path))
W
WenmuZhou 已提交
147
    if not os.path.exists(params_file_path):
L
LDOUBLEV 已提交
148 149
        raise ValueError("not find params file path {}".format(
            params_file_path))
W
WenmuZhou 已提交
150

W
WenmuZhou 已提交
151
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
152

L
LDOUBLEV 已提交
153 154 155 156 157 158 159 160 161 162
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

W
WenmuZhou 已提交
163 164
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
165 166
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
167 168
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
L
LDOUBLEV 已提交
169 170
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
L
LDOUBLEV 已提交
171
        if mode == "det":
L
LDOUBLEV 已提交
172 173 174 175
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
L
LDOUBLEV 已提交
176
                "conv2d_59.tmp_0": [1, 96, 20, 20],
L
LDOUBLEV 已提交
177 178 179 180 181 182 183 184 185 186 187 188
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
L
LDOUBLEV 已提交
189
                "conv2d_59.tmp_0": [1, 96, 400, 400],
L
LDOUBLEV 已提交
190 191 192 193 194 195 196 197 198 199 200 201
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
L
LDOUBLEV 已提交
202
                "conv2d_59.tmp_0": [1, 96, 160, 160],
L
LDOUBLEV 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
219 220 221 222
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
223 224 225
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
226 227
    else:
        config.disable_gpu()
L
LDOUBLEV 已提交
228 229 230
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
231
            # default cpu threads as 10
L
LDOUBLEV 已提交
232
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
233 234 235 236 237
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

L
LDOUBLEV 已提交
238 239
    # enable memory optim
    config.enable_memory_optim()
W
WenmuZhou 已提交
240 241
    config.disable_glog_info()

W
WenmuZhou 已提交
242
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
W
WenmuZhou 已提交
243
    if mode == 'table':
W
WenmuZhou 已提交
244
        config.delete_pass("fc_fuse_pass")  # not supported for table
W
WenmuZhou 已提交
245
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
246
    config.switch_ir_optim(True)
247

W
WenmuZhou 已提交
248 249
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
250 251
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
252
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
253 254 255
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
256
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
257
        output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
258
    return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
259 260


J
Jethong 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
277
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
278 279 280 281
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
282
    return src_im
L
LDOUBLEV 已提交
283 284


L
LDOUBLEV 已提交
285 286
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
287
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
288 289 290 291 292
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
293 294
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
295 296


W
WenmuZhou 已提交
297 298 299 300 301
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
302
             font_path="./doc/fonts/simfang.ttf"):
303 304 305
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
306
        image(Image|array): RGB image
307 308 309 310
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
311
        font_path: the path of font which is used to draw text
312 313 314
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
315 316
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
317 318 319 320
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
321
            continue
W
WenmuZhou 已提交
322
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
323
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
324
    if txts is not None:
L
LDOUBLEV 已提交
325
        img = np.array(resize_img(image, input_size=600))
326
        txt_img = text_visual(
W
WenmuZhou 已提交
327 328 329 330 331 332
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
333
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
334 335
        return img
    return image
336 337


W
WenmuZhou 已提交
338 339 340 341 342 343
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
344 345 346
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
347 348

    import random
L
LDOUBLEV 已提交
349

350 351 352
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
353 354 355
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
356 357
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
358
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
359 360 361 362 363 364 365 366 367 368
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
369 370
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
371
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
372 373 374
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
375 376
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
377 378 379
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
380
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
381 382
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
383 384 385 386
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
387 388 389
    return np.array(img_show)


390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
414 415 416 417 418 419
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
420 421 422 423 424 425 426
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
427
        font_path: the path of font which is used to draw text
428 429 430 431 432 433 434 435 436
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
437 438
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
439
        return blank_img, draw_txt
L
LDOUBLEV 已提交
440

441 442 443 444
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
445
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
446 447 448

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
449
    count, index = 1, 0
450 451
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
452
        if scores[idx] < threshold or math.isnan(scores[idx]):
453 454 455 456 457 458 459 460 461 462 463
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
464
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
465 466 467 468 469
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
470
            count += 1
471 472 473
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
474
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
475
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
476
        # whether add new blank img or not
L
LDOUBLEV 已提交
477
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
478 479 480
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
481
        count += 1
482 483 484 485 486 487
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
488 489


D
dyning 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


L
LDOUBLEV 已提交
544
if __name__ == '__main__':
L
LDOUBLEV 已提交
545
    pass