cv_module.py 15.1 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
haoyuying 已提交
16 17
import time
import os
18
from typing import List
H
haoyuying 已提交
19
from collections import OrderedDict
20

H
haoyuying 已提交
21
import cv2
W
wuzewu 已提交
22
import paddle
23
import numpy as np
H
haoyuying 已提交
24
import paddle.nn as nn
25
import paddle.nn.functional as F
H
haoyuying 已提交
26
from PIL import Image
W
wuzewu 已提交
27

28 29 30
import paddlehub.vision.transforms as T
import paddlehub.vision.functional as Func
from paddlehub.vision import utils
W
wuzewu 已提交
31 32 33 34 35 36
from paddlehub.module.module import serving, RunModule
from paddlehub.utils.utils import base64_to_cv2


class ImageServing(object):
    @serving
37
    def serving_method(self, images: List[str], **kwargs) -> List[dict]:
W
wuzewu 已提交
38 39 40 41 42 43 44
        """Run as a service."""
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.predict(images=images_decode, **kwargs)
        return results


class ImageClassifierModule(RunModule, ImageServing):
45 46 47 48 49
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
W
wuzewu 已提交
50 51
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
52 53 54 55

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
W
wuzewu 已提交
56 57
        return self.validation_step(batch, batch_idx)

58 59 60 61 62
    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
W
wuzewu 已提交
63 64
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
65 66 67 68

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
W
wuzewu 已提交
69
        images = batch[0]
70
        labels = paddle.unsqueeze(batch[1], axis=-1)
W
wuzewu 已提交
71 72

        preds = self(images)
73 74 75
        loss, _ = F.softmax_with_cross_entropy(preds, labels, return_softmax=True, axis=1)
        loss = paddle.mean(loss)
        acc = paddle.metric.accuracy(preds, labels)
W
wuzewu 已提交
76 77
        return {'loss': loss, 'metrics': {'acc': acc}}

78 79 80 81 82 83 84 85 86 87 88
    def predict(self, images: List[np.ndarray], top_k: int = 1) -> List[dict]:
        '''
        Predict images

        Args:
            images(list[numpy.ndarray]) : Images to be predicted, consist of np.ndarray in bgr format.
            top_k(int) : Output top k result of each image.

        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
W
wuzewu 已提交
89 90 91
        images = self.transforms(images)
        if len(images.shape) == 3:
            images = images[np.newaxis, :]
W
wuzewu 已提交
92
        preds = self(paddle.to_tensor(images))
93
        preds = F.softmax(preds, axis=1).numpy()
W
wuzewu 已提交
94 95 96 97 98 99 100 101 102
        pred_idxs = np.argsort(preds)[::-1][:, :top_k]
        res = []
        for i, pred in enumerate(pred_idxs):
            res_dict = {}
            for k in pred:
                class_name = self.labels[int(k)]
                res_dict[class_name] = preds[i][k]
            res.append(res_dict)
        return res
H
haoyuying 已提交
103 104 105 106 107 108


class ImageColorizeModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.
H
haoyuying 已提交
109

H
haoyuying 已提交
110 111 112
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
113

H
haoyuying 已提交
114
        Returns:
H
haoyuying 已提交
115
            results(dict): The model outputs, such as loss and metrics.
H
haoyuying 已提交
116 117 118 119 120 121
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.
H
haoyuying 已提交
122

H
haoyuying 已提交
123 124 125
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
126

H
haoyuying 已提交
127 128 129
        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
H
haoyuying 已提交
130 131
        img = self.preprocess(batch[0])
        out_class, out_reg = self(img['A'], img['hint_B'], img['mask_B'])
H
haoyuying 已提交
132

H
haoyuying 已提交
133
        # loss
H
haoyuying 已提交
134
        criterionCE = nn.loss.CrossEntropyLoss()
H
haoyuying 已提交
135 136
        loss_ce = criterionCE(out_class, img['real_B_enc'][:, 0, :, :])
        loss_G_L1_reg = paddle.sum(paddle.abs(img['B'] - out_reg), axis=1, keepdim=True)
H
haoyuying 已提交
137 138
        loss_G_L1_reg = paddle.mean(loss_G_L1_reg)
        loss = loss_ce + loss_G_L1_reg
H
haoyuying 已提交
139

H
haoyuying 已提交
140
        #calculate psnr
H
haoyuying 已提交
141 142
        visual_ret = OrderedDict()
        psnrs = []
H
haoyuying 已提交
143
        lab2rgb = T.LAB2RGB()
H
haoyuying 已提交
144
        process = T.ColorPostprocess()
H
haoyuying 已提交
145
        for i in range(img['A'].numpy().shape[0]):
146 147 148 149 150 151 152
            # real = lab2rgb(np.concatenate((img['A'].numpy(), img['B'].numpy()), axis=1))[i]
            # visual_ret['real'] = process(real)
            # fake = lab2rgb(np.concatenate((img['A'].numpy(), out_reg.numpy()), axis=1))[i]
            # visual_ret['fake_reg'] = process(fake)
            # mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0)**2)
            # psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            psnrs.append(0)  #psnr_value)
153
        psnr = paddle.to_tensor(np.array(psnrs))
H
haoyuying 已提交
154 155 156 157 158
        return {'loss': loss, 'metrics': {'psnr': psnr}}

    def predict(self, images: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Colorize images
H
haoyuying 已提交
159

H
haoyuying 已提交
160 161 162 163
        Args:
            images(str) : Images path to be colorized.
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.
H
haoyuying 已提交
164

H
haoyuying 已提交
165 166 167
        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
168
        self.eval()
H
haoyuying 已提交
169
        lab2rgb = T.LAB2RGB()
H
haoyuying 已提交
170 171
        process = T.ColorPostprocess()
        resize = T.Resize((256, 256))
H
haoyuying 已提交
172

H
haoyuying 已提交
173
        im = self.transforms(images, is_train=False)
H
haoyuying 已提交
174 175 176
        im = im[np.newaxis, :, :, :]
        im = self.preprocess(im)
        out_class, out_reg = self(im['A'], im['hint_B'], im['mask_B'])
H
haoyuying 已提交
177

H
haoyuying 已提交
178 179
        result = []
        visual_ret = OrderedDict()
H
haoyuying 已提交
180
        for i in range(im['A'].shape[0]):
H
haoyuying 已提交
181
            gray = lab2rgb(np.concatenate((im['A'].numpy(), np.zeros(im['B'].shape)), axis=1))[i]
H
haoyuying 已提交
182
            visual_ret['gray'] = resize(process(gray))
H
haoyuying 已提交
183
            hint = lab2rgb(np.concatenate((im['A'].numpy(), im['hint_B'].numpy()), axis=1))[i]
H
haoyuying 已提交
184
            visual_ret['hint'] = resize(process(hint))
H
haoyuying 已提交
185
            real = lab2rgb(np.concatenate((im['A'].numpy(), im['B'].numpy()), axis=1))[i]
H
haoyuying 已提交
186
            visual_ret['real'] = resize(process(real))
H
haoyuying 已提交
187
            fake = lab2rgb(np.concatenate((im['A'].numpy(), out_reg.numpy()), axis=1))[i]
H
haoyuying 已提交
188
            visual_ret['fake_reg'] = resize(process(fake))
H
haoyuying 已提交
189

H
haoyuying 已提交
190
            if visualization:
H
haoyuying 已提交
191 192
                img = Image.open(images)
                w, h = img.size[0], img.size[1]
H
haoyuying 已提交
193 194 195 196 197
                fake_name = "fake_" + str(time.time()) + ".png"
                if not os.path.exists(save_path):
                    os.mkdir(save_path)
                fake_path = os.path.join(save_path, fake_name)
                visual_gray = Image.fromarray(visual_ret['fake_reg'])
H
haoyuying 已提交
198
                visual_gray = visual_gray.resize((w, h), Image.BILINEAR)
H
haoyuying 已提交
199
                visual_gray.save(fake_path)
H
haoyuying 已提交
200 201

            mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0)**2)
H
haoyuying 已提交
202 203 204
            psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            result.append(visual_ret)
        return result
H
haoyuying 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233


class Yolov3Module(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict): The model outputs, such as loss.
        '''

        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        img = batch[0].astype('float32')
234 235 236 237 238 239 240 241 242
        gtbox = batch[1].astype('float32')
        gtlabel = batch[2].astype('int32')
        gtscore = batch[3].astype("float32")
        losses = []
        outputs = self(img)
        self.downsample = 32

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
243 244 245 246 247 248 249 250 251 252 253
            loss = F.yolov3_loss(
                x=out,
                gt_box=gtbox,
                gt_label=gtlabel,
                gt_score=gtscore,
                anchors=self.anchors,
                anchor_mask=anchor_mask,
                class_num=self.class_num,
                ignore_thresh=self.ignore_thresh,
                downsample_ratio=32,
                use_label_smooth=False)
W
wuzewu 已提交
254
            losses.append(paddle.mean(loss))
255 256 257
            self.downsample //= 2

        return {'loss': sum(losses)}
H
haoyuying 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

    def predict(self, imgpath: str, filelist: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Detect images

        Args:
            imgpath(str): Image path .
            filelist(str): Path to get label name.
            visualization(bool): Whether to save result image.
            save_path(str) : Path to save detected images.

        Returns:
            boxes(np.ndarray): Predict box information.
            scores(np.ndarray): Predict score.
            labels(np.ndarray): Predict labels.
        '''
274
        self.eval()
275 276 277 278
        boxes = []
        scores = []
        self.downsample = 32
        im = self.transform(imgpath)
279
        h, w, c = utils.img_shape(imgpath)
280
        im_shape = paddle.to_tensor(np.array([[h, w]]).astype('int32'))
281
        label_names = utils.get_label_infos(filelist)
282 283 284 285 286 287 288 289 290 291 292
        img_data = paddle.to_tensor(np.array([im]).astype('float32'))

        outputs = self(img_data)

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
            mask_anchors = []
            for m in anchor_mask:
                mask_anchors.append((self.anchors[2 * m]))
                mask_anchors.append(self.anchors[2 * m + 1])

293 294 295 296 297 298 299 300
            box, score = F.yolo_box(
                x=out,
                img_size=im_shape,
                anchors=mask_anchors,
                class_num=self.class_num,
                conf_thresh=self.valid_thresh,
                downsample_ratio=self.downsample,
                name="yolo_box" + str(i))
301 302 303 304 305 306 307 308

            boxes.append(box)
            scores.append(paddle.transpose(score, perm=[0, 2, 1]))
            self.downsample //= 2

        yolo_boxes = paddle.concat(boxes, axis=1)
        yolo_scores = paddle.concat(scores, axis=2)

309 310 311 312 313 314 315 316
        pred = F.multiclass_nms(
            bboxes=yolo_boxes,
            scores=yolo_scores,
            score_threshold=self.valid_thresh,
            nms_top_k=self.nms_topk,
            keep_top_k=self.nms_posk,
            nms_threshold=self.nms_thresh,
            background_label=-1)
317 318 319 320 321 322 323

        bboxes = pred.numpy()
        labels = bboxes[:, 0].astype('int32')
        scores = bboxes[:, 1].astype('float32')
        boxes = bboxes[:, 2:].astype('float32')

        if visualization:
H
haoyuying 已提交
324 325
            if not os.path.exists(save_path):
                os.mkdir(save_path)
326
            utils.draw_boxes_on_image(imgpath, boxes, scores, labels, label_names, 0.5, save_path)
H
haoyuying 已提交
327 328

        return boxes, scores, labels
H
haoyuying 已提交
329 330


H
haoyuying 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
class StyleTransferModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        mse_loss = nn.MSELoss()
        N, C, H, W = batch[0].shape
        batch[1] = batch[1][0].unsqueeze(0)
        self.setTarget(batch[1])

        y = self(batch[0])
        xc = paddle.to_tensor(batch[0].numpy().copy())
363 364
        y = utils.subtract_imagenet_mean_batch(y)
        xc = utils.subtract_imagenet_mean_batch(xc)
H
haoyuying 已提交
365 366 367 368 369
        features_y = self.getFeature(y)
        features_xc = self.getFeature(xc)
        f_xc_c = paddle.to_tensor(features_xc[1].numpy(), stop_gradient=True)
        content_loss = mse_loss(features_y[1], f_xc_c)

370
        batch[1] = utils.subtract_imagenet_mean_batch(batch[1])
H
haoyuying 已提交
371
        features_style = self.getFeature(batch[1])
372
        gram_style = [utils.gram_matrix(y) for y in features_style]
H
haoyuying 已提交
373 374
        style_loss = 0.
        for m in range(len(features_y)):
375
            gram_y = utils.gram_matrix(features_y[m])
H
haoyuying 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
            gram_s = paddle.to_tensor(np.tile(gram_style[m].numpy(), (N, 1, 1, 1)))
            style_loss += mse_loss(gram_y, gram_s[:N, :, :])

        loss = content_loss + style_loss

        return {'loss': loss, 'metrics': {'content gap': content_loss, 'style gap': style_loss}}

    def predict(self, origin_path: str, style_path: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Colorize images

        Args:
            origin_path(str): Content image path .
            style_path(str): Style image path.
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.

        Returns:
            output(np.ndarray) : The style transformed images with bgr mode.
        '''
396
        self.eval()
H
haoyuying 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        content = paddle.to_tensor(self.transform(origin_path))
        style = paddle.to_tensor(self.transform(style_path))
        content = content.unsqueeze(0)
        style = style.unsqueeze(0)

        self.setTarget(style)
        output = self(content)
        output = paddle.clip(output[0].transpose((1, 2, 0)), 0, 255).numpy()

        if visualization:
            output = output.astype(np.uint8)
            style_name = "style_" + str(time.time()) + ".png"
            if not os.path.exists(save_path):
                os.mkdir(save_path)
            path = os.path.join(save_path, style_name)
            cv2.imwrite(path, output)
        return output