cv_module.py 15.0 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
haoyuying 已提交
16 17
import time
import os
18
from typing import List
H
haoyuying 已提交
19
from collections import OrderedDict
20

H
haoyuying 已提交
21
import cv2
W
wuzewu 已提交
22 23
import numpy as np
import paddle
H
haoyuying 已提交
24
import paddle.nn as nn
25
import paddle.nn.functional as F
H
haoyuying 已提交
26
from PIL import Image
W
wuzewu 已提交
27 28 29

from paddlehub.module.module import serving, RunModule
from paddlehub.utils.utils import base64_to_cv2
H
haoyuying 已提交
30 31
import paddlehub.process.transforms as T
import paddlehub.process.functional as Func
W
wuzewu 已提交
32 33 34 35


class ImageServing(object):
    @serving
36
    def serving_method(self, images: List[str], **kwargs) -> List[dict]:
W
wuzewu 已提交
37 38 39 40 41 42 43
        """Run as a service."""
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.predict(images=images_decode, **kwargs)
        return results


class ImageClassifierModule(RunModule, ImageServing):
44 45 46 47 48
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
W
wuzewu 已提交
49 50
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
51 52 53 54

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
W
wuzewu 已提交
55 56
        return self.validation_step(batch, batch_idx)

57 58 59 60 61
    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
W
wuzewu 已提交
62 63
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
64 65 66 67

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
W
wuzewu 已提交
68
        images = batch[0]
69
        labels = paddle.unsqueeze(batch[1], axis=-1)
W
wuzewu 已提交
70 71

        preds = self(images)
72 73 74
        loss, _ = F.softmax_with_cross_entropy(preds, labels, return_softmax=True, axis=1)
        loss = paddle.mean(loss)
        acc = paddle.metric.accuracy(preds, labels)
W
wuzewu 已提交
75 76
        return {'loss': loss, 'metrics': {'acc': acc}}

77 78 79 80 81 82 83 84 85 86 87
    def predict(self, images: List[np.ndarray], top_k: int = 1) -> List[dict]:
        '''
        Predict images

        Args:
            images(list[numpy.ndarray]) : Images to be predicted, consist of np.ndarray in bgr format.
            top_k(int) : Output top k result of each image.

        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
W
wuzewu 已提交
88 89 90
        images = self.transforms(images)
        if len(images.shape) == 3:
            images = images[np.newaxis, :]
W
wuzewu 已提交
91
        preds = self(paddle.to_tensor(images))
92
        preds = F.softmax(preds, axis=1).numpy()
W
wuzewu 已提交
93 94 95 96 97 98 99 100 101
        pred_idxs = np.argsort(preds)[::-1][:, :top_k]
        res = []
        for i, pred in enumerate(pred_idxs):
            res_dict = {}
            for k in pred:
                class_name = self.labels[int(k)]
                res_dict[class_name] = preds[i][k]
            res.append(res_dict)
        return res
H
haoyuying 已提交
102 103 104 105 106 107


class ImageColorizeModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.
H
haoyuying 已提交
108

H
haoyuying 已提交
109 110 111
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
112

H
haoyuying 已提交
113
        Returns:
H
haoyuying 已提交
114
            results(dict): The model outputs, such as loss and metrics.
H
haoyuying 已提交
115 116 117 118 119 120
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.
H
haoyuying 已提交
121

H
haoyuying 已提交
122 123 124
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
125

H
haoyuying 已提交
126 127 128
        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
H
haoyuying 已提交
129 130
        img = self.preprocess(batch[0])
        out_class, out_reg = self(img['A'], img['hint_B'], img['mask_B'])
H
haoyuying 已提交
131

H
haoyuying 已提交
132
        # loss
H
haoyuying 已提交
133
        criterionCE = nn.loss.CrossEntropyLoss()
H
haoyuying 已提交
134 135
        loss_ce = criterionCE(out_class, img['real_B_enc'][:, 0, :, :])
        loss_G_L1_reg = paddle.sum(paddle.abs(img['B'] - out_reg), axis=1, keepdim=True)
H
haoyuying 已提交
136 137
        loss_G_L1_reg = paddle.mean(loss_G_L1_reg)
        loss = loss_ce + loss_G_L1_reg
H
haoyuying 已提交
138

H
haoyuying 已提交
139
        #calculate psnr
H
haoyuying 已提交
140 141
        visual_ret = OrderedDict()
        psnrs = []
H
haoyuying 已提交
142
        lab2rgb = T.LAB2RGB()
H
haoyuying 已提交
143
        process = T.ColorPostprocess()
H
haoyuying 已提交
144 145
        for i in range(img['A'].numpy().shape[0]):
            real = lab2rgb(np.concatenate((img['A'].numpy(), img['B'].numpy()), axis=1))[i]
H
haoyuying 已提交
146
            visual_ret['real'] = process(real)
H
haoyuying 已提交
147
            fake = lab2rgb(np.concatenate((img['A'].numpy(), out_reg.numpy()), axis=1))[i]
H
haoyuying 已提交
148
            visual_ret['fake_reg'] = process(fake)
H
haoyuying 已提交
149
            mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0)**2)
H
haoyuying 已提交
150 151 152 153 154 155 156 157
            psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            psnrs.append(psnr_value)
        psnr = paddle.to_variable(np.array(psnrs))
        return {'loss': loss, 'metrics': {'psnr': psnr}}

    def predict(self, images: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Colorize images
H
haoyuying 已提交
158

H
haoyuying 已提交
159 160 161 162
        Args:
            images(str) : Images path to be colorized.
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.
H
haoyuying 已提交
163

H
haoyuying 已提交
164 165 166
        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
H
haoyuying 已提交
167 168

        lab2rgb = T.LAB2RGB()
H
haoyuying 已提交
169 170
        process = T.ColorPostprocess()
        resize = T.Resize((256, 256))
H
haoyuying 已提交
171

H
haoyuying 已提交
172
        im = self.transforms(images, is_train=False)
H
haoyuying 已提交
173 174 175
        im = im[np.newaxis, :, :, :]
        im = self.preprocess(im)
        out_class, out_reg = self(im['A'], im['hint_B'], im['mask_B'])
H
haoyuying 已提交
176

H
haoyuying 已提交
177 178
        result = []
        visual_ret = OrderedDict()
H
haoyuying 已提交
179
        for i in range(im['A'].shape[0]):
H
haoyuying 已提交
180
            gray = lab2rgb(np.concatenate((im['A'].numpy(), np.zeros(im['B'].shape)), axis=1))[i]
H
haoyuying 已提交
181
            visual_ret['gray'] = resize(process(gray))
H
haoyuying 已提交
182
            hint = lab2rgb(np.concatenate((im['A'].numpy(), im['hint_B'].numpy()), axis=1))[i]
H
haoyuying 已提交
183
            visual_ret['hint'] = resize(process(hint))
H
haoyuying 已提交
184
            real = lab2rgb(np.concatenate((im['A'].numpy(), im['B'].numpy()), axis=1))[i]
H
haoyuying 已提交
185
            visual_ret['real'] = resize(process(real))
H
haoyuying 已提交
186
            fake = lab2rgb(np.concatenate((im['A'].numpy(), out_reg.numpy()), axis=1))[i]
H
haoyuying 已提交
187
            visual_ret['fake_reg'] = resize(process(fake))
H
haoyuying 已提交
188

H
haoyuying 已提交
189
            if visualization:
H
haoyuying 已提交
190 191
                img = Image.open(images)
                w, h = img.size[0], img.size[1]
H
haoyuying 已提交
192 193 194 195 196
                fake_name = "fake_" + str(time.time()) + ".png"
                if not os.path.exists(save_path):
                    os.mkdir(save_path)
                fake_path = os.path.join(save_path, fake_name)
                visual_gray = Image.fromarray(visual_ret['fake_reg'])
H
haoyuying 已提交
197
                visual_gray = visual_gray.resize((w, h), Image.BILINEAR)
H
haoyuying 已提交
198
                visual_gray.save(fake_path)
H
haoyuying 已提交
199 200

            mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0)**2)
H
haoyuying 已提交
201 202 203
            psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            result.append(visual_ret)
        return result
H
haoyuying 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232


class Yolov3Module(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict): The model outputs, such as loss.
        '''

        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        img = batch[0].astype('float32')
233 234 235 236 237 238 239 240 241
        gtbox = batch[1].astype('float32')
        gtlabel = batch[2].astype('int32')
        gtscore = batch[3].astype("float32")
        losses = []
        outputs = self(img)
        self.downsample = 32

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
W
wuzewu 已提交
242 243 244 245 246 247 248 249 250 251 252 253
            loss = F.yolov3_loss(
                x=out,
                gt_box=gtbox,
                gt_label=gtlabel,
                gt_score=gtscore,
                anchors=self.anchors,
                anchor_mask=anchor_mask,
                class_num=self.class_num,
                ignore_thresh=self.ignore_thresh,
                downsample_ratio=32,
                use_label_smooth=False)
            losses.append(paddle.mean(loss))
254 255 256
            self.downsample //= 2

        return {'loss': sum(losses)}
H
haoyuying 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

    def predict(self, imgpath: str, filelist: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Detect images

        Args:
            imgpath(str): Image path .
            filelist(str): Path to get label name.
            visualization(bool): Whether to save result image.
            save_path(str) : Path to save detected images.

        Returns:
            boxes(np.ndarray): Predict box information.
            scores(np.ndarray): Predict score.
            labels(np.ndarray): Predict labels.
        '''
273 274 275 276
        boxes = []
        scores = []
        self.downsample = 32
        im = self.transform(imgpath)
H
haoyuying 已提交
277
        h, w, c = Func.img_shape(imgpath)
278
        im_shape = paddle.to_tensor(np.array([[h, w]]).astype('int32'))
H
haoyuying 已提交
279
        label_names = Func.get_label_infos(filelist)
280 281 282 283 284 285 286 287 288 289 290
        img_data = paddle.to_tensor(np.array([im]).astype('float32'))

        outputs = self(img_data)

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
            mask_anchors = []
            for m in anchor_mask:
                mask_anchors.append((self.anchors[2 * m]))
                mask_anchors.append(self.anchors[2 * m + 1])

W
wuzewu 已提交
291 292 293 294 295 296 297 298
            box, score = F.yolo_box(
                x=out,
                img_size=im_shape,
                anchors=mask_anchors,
                class_num=self.class_num,
                conf_thresh=self.valid_thresh,
                downsample_ratio=self.downsample,
                name="yolo_box" + str(i))
299 300 301 302 303 304 305 306

            boxes.append(box)
            scores.append(paddle.transpose(score, perm=[0, 2, 1]))
            self.downsample //= 2

        yolo_boxes = paddle.concat(boxes, axis=1)
        yolo_scores = paddle.concat(scores, axis=2)

W
wuzewu 已提交
307 308 309 310 311 312 313 314
        pred = F.multiclass_nms(
            bboxes=yolo_boxes,
            scores=yolo_scores,
            score_threshold=self.valid_thresh,
            nms_top_k=self.nms_topk,
            keep_top_k=self.nms_posk,
            nms_threshold=self.nms_thresh,
            background_label=-1)
315 316 317 318 319 320 321

        bboxes = pred.numpy()
        labels = bboxes[:, 0].astype('int32')
        scores = bboxes[:, 1].astype('float32')
        boxes = bboxes[:, 2:].astype('float32')

        if visualization:
H
haoyuying 已提交
322 323 324
            if not os.path.exists(save_path):
                os.mkdir(save_path)
            Func.draw_boxes_on_image(imgpath, boxes, scores, labels, label_names, 0.5, save_path)
H
haoyuying 已提交
325 326

        return boxes, scores, labels
H
haoyuying 已提交
327 328


H
haoyuying 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
class StyleTransferModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        mse_loss = nn.MSELoss()
        N, C, H, W = batch[0].shape
        batch[1] = batch[1][0].unsqueeze(0)
        self.setTarget(batch[1])

        y = self(batch[0])
        xc = paddle.to_tensor(batch[0].numpy().copy())
H
haoyuying 已提交
361 362
        y = Func.subtract_imagenet_mean_batch(y)
        xc = Func.subtract_imagenet_mean_batch(xc)
H
haoyuying 已提交
363 364 365 366 367
        features_y = self.getFeature(y)
        features_xc = self.getFeature(xc)
        f_xc_c = paddle.to_tensor(features_xc[1].numpy(), stop_gradient=True)
        content_loss = mse_loss(features_y[1], f_xc_c)

H
haoyuying 已提交
368
        batch[1] = Func.subtract_imagenet_mean_batch(batch[1])
H
haoyuying 已提交
369
        features_style = self.getFeature(batch[1])
H
haoyuying 已提交
370
        gram_style = [Func.gram_matrix(y) for y in features_style]
H
haoyuying 已提交
371 372
        style_loss = 0.
        for m in range(len(features_y)):
H
haoyuying 已提交
373
            gram_y = Func.gram_matrix(features_y[m])
H
haoyuying 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
            gram_s = paddle.to_tensor(np.tile(gram_style[m].numpy(), (N, 1, 1, 1)))
            style_loss += mse_loss(gram_y, gram_s[:N, :, :])

        loss = content_loss + style_loss

        return {'loss': loss, 'metrics': {'content gap': content_loss, 'style gap': style_loss}}

    def predict(self, origin_path: str, style_path: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Colorize images

        Args:
            origin_path(str): Content image path .
            style_path(str): Style image path.
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.

        Returns:
            output(np.ndarray) : The style transformed images with bgr mode.
        '''
        content = paddle.to_tensor(self.transform(origin_path))
        style = paddle.to_tensor(self.transform(style_path))
        content = content.unsqueeze(0)
        style = style.unsqueeze(0)

        self.setTarget(style)
        output = self(content)
        output = paddle.clip(output[0].transpose((1, 2, 0)), 0, 255).numpy()

        if visualization:
            output = output.astype(np.uint8)
            style_name = "style_" + str(time.time()) + ".png"
            if not os.path.exists(save_path):
                os.mkdir(save_path)
            path = os.path.join(save_path, style_name)
            cv2.imwrite(path, output)
        return output