cv_module.py 15.0 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
haoyuying 已提交
16 17
import time
import os
18
from typing import List
H
haoyuying 已提交
19
from collections import OrderedDict
20

H
haoyuying 已提交
21
import cv2
W
wuzewu 已提交
22 23
import numpy as np
import paddle
H
haoyuying 已提交
24
import paddle.nn as nn
25
import paddle.nn.functional as F
H
haoyuying 已提交
26
from PIL import Image
W
wuzewu 已提交
27 28 29

from paddlehub.module.module import serving, RunModule
from paddlehub.utils.utils import base64_to_cv2
H
haoyuying 已提交
30 31
import paddlehub.process.transforms as T
import paddlehub.process.functional as Func
W
wuzewu 已提交
32 33 34 35


class ImageServing(object):
    @serving
36
    def serving_method(self, images: List[str], **kwargs) -> List[dict]:
W
wuzewu 已提交
37 38 39 40 41 42 43
        """Run as a service."""
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.predict(images=images_decode, **kwargs)
        return results


class ImageClassifierModule(RunModule, ImageServing):
44 45 46 47 48
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
W
wuzewu 已提交
49 50
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
51 52 53 54

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
W
wuzewu 已提交
55 56
        return self.validation_step(batch, batch_idx)

57 58 59 60 61
    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
W
wuzewu 已提交
62 63
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
64 65 66 67

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
W
wuzewu 已提交
68
        images = batch[0]
69
        labels = paddle.unsqueeze(batch[1], axis=-1)
W
wuzewu 已提交
70 71

        preds = self(images)
72 73 74
        loss, _ = F.softmax_with_cross_entropy(preds, labels, return_softmax=True, axis=1)
        loss = paddle.mean(loss)
        acc = paddle.metric.accuracy(preds, labels)
W
wuzewu 已提交
75 76
        return {'loss': loss, 'metrics': {'acc': acc}}

77 78 79 80 81 82 83 84 85 86 87
    def predict(self, images: List[np.ndarray], top_k: int = 1) -> List[dict]:
        '''
        Predict images

        Args:
            images(list[numpy.ndarray]) : Images to be predicted, consist of np.ndarray in bgr format.
            top_k(int) : Output top k result of each image.

        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
W
wuzewu 已提交
88 89 90
        images = self.transforms(images)
        if len(images.shape) == 3:
            images = images[np.newaxis, :]
W
wuzewu 已提交
91
        preds = self(paddle.to_tensor(images))
92
        preds = F.softmax(preds, axis=1).numpy()
W
wuzewu 已提交
93 94 95 96 97 98 99 100 101
        pred_idxs = np.argsort(preds)[::-1][:, :top_k]
        res = []
        for i, pred in enumerate(pred_idxs):
            res_dict = {}
            for k in pred:
                class_name = self.labels[int(k)]
                res_dict[class_name] = preds[i][k]
            res.append(res_dict)
        return res
H
haoyuying 已提交
102 103 104 105 106 107


class ImageColorizeModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.
H
haoyuying 已提交
108

H
haoyuying 已提交
109 110 111
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
112

H
haoyuying 已提交
113 114 115 116 117 118 119 120
        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.
H
haoyuying 已提交
121

H
haoyuying 已提交
122 123 124
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
125

H
haoyuying 已提交
126 127 128 129
        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        out_class, out_reg = self(batch[0], batch[1], batch[2])
H
haoyuying 已提交
130

H
haoyuying 已提交
131 132 133 134 135
        criterionCE = nn.loss.CrossEntropyLoss()
        loss_ce = criterionCE(out_class, batch[4][:, 0, :, :])
        loss_G_L1_reg = paddle.sum(paddle.abs(batch[3] - out_reg), axis=1, keepdim=True)
        loss_G_L1_reg = paddle.mean(loss_G_L1_reg)
        loss = loss_ce + loss_G_L1_reg
H
haoyuying 已提交
136

H
haoyuying 已提交
137 138
        visual_ret = OrderedDict()
        psnrs = []
H
haoyuying 已提交
139 140
        lab2rgb = T.ConvertColorSpace(mode='LAB2RGB')
        process = T.ColorPostprocess()
H
haoyuying 已提交
141

H
haoyuying 已提交
142 143 144 145 146
        for i in range(batch[0].numpy().shape[0]):
            real = lab2rgb(np.concatenate((batch[0].numpy(), batch[3].numpy()), axis=1))[i]
            visual_ret['real'] = process(real)
            fake = lab2rgb(np.concatenate((batch[0].numpy(), out_reg.numpy()), axis=1))[i]
            visual_ret['fake_reg'] = process(fake)
H
haoyuying 已提交
147
            mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0)**2)
H
haoyuying 已提交
148 149 150
            psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            psnrs.append(psnr_value)
        psnr = paddle.to_variable(np.array(psnrs))
H
haoyuying 已提交
151

H
haoyuying 已提交
152 153 154 155 156
        return {'loss': loss, 'metrics': {'psnr': psnr}}

    def predict(self, images: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Colorize images
H
haoyuying 已提交
157

H
haoyuying 已提交
158 159 160 161
        Args:
            images(str) : Images path to be colorized.
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.
H
haoyuying 已提交
162

H
haoyuying 已提交
163 164 165
        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
H
haoyuying 已提交
166 167 168
        lab2rgb = T.ConvertColorSpace(mode='LAB2RGB')
        process = T.ColorPostprocess()
        resize = T.Resize((256, 256))
H
haoyuying 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        visual_ret = OrderedDict()
        im = self.transforms(images, is_train=False)
        out_class, out_reg = self(paddle.to_tensor(im['A']), paddle.to_variable(im['hint_B']),
                                  paddle.to_variable(im['mask_B']))
        result = []

        for i in range(im['A'].shape[0]):
            gray = lab2rgb(np.concatenate((im['A'], np.zeros(im['B'].shape)), axis=1))[i]
            visual_ret['gray'] = resize(process(gray))
            hint = lab2rgb(np.concatenate((im['A'], im['hint_B']), axis=1))[i]
            visual_ret['hint'] = resize(process(hint))
            real = lab2rgb(np.concatenate((im['A'], im['B']), axis=1))[i]
            visual_ret['real'] = resize(process(real))
            fake = lab2rgb(np.concatenate((im['A'], out_reg.numpy()), axis=1))[i]
            visual_ret['fake_reg'] = resize(process(fake))
H
haoyuying 已提交
184

H
haoyuying 已提交
185 186 187 188 189 190 191
            if visualization:
                fake_name = "fake_" + str(time.time()) + ".png"
                if not os.path.exists(save_path):
                    os.mkdir(save_path)
                fake_path = os.path.join(save_path, fake_name)
                visual_gray = Image.fromarray(visual_ret['fake_reg'])
                visual_gray.save(fake_path)
H
haoyuying 已提交
192 193

            mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0)**2)
H
haoyuying 已提交
194 195 196
            psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            result.append(visual_ret)
        return result
H
haoyuying 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225


class Yolov3Module(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict): The model outputs, such as loss.
        '''

        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        img = batch[0].astype('float32')
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        gtbox = batch[1].astype('float32')
        gtlabel = batch[2].astype('int32')
        gtscore = batch[3].astype("float32")
        losses = []
        outputs = self(img)
        self.downsample = 32

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
            loss = F.yolov3_loss(x=out,
                                 gt_box=gtbox,
                                 gt_label=gtlabel,
                                 gt_score=gtscore,
                                 anchors=self.anchors,
                                 anchor_mask=anchor_mask,
                                 class_num=self.class_num,
                                 ignore_thresh=self.ignore_thresh,
                                 downsample_ratio=32,
                                 use_label_smooth=False)
            losses.append(paddle.reduce_mean(loss))
            self.downsample //= 2

        return {'loss': sum(losses)}
H
haoyuying 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    def predict(self, imgpath: str, filelist: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Detect images

        Args:
            imgpath(str): Image path .
            filelist(str): Path to get label name.
            visualization(bool): Whether to save result image.
            save_path(str) : Path to save detected images.

        Returns:
            boxes(np.ndarray): Predict box information.
            scores(np.ndarray): Predict score.
            labels(np.ndarray): Predict labels.
        '''
265 266 267 268
        boxes = []
        scores = []
        self.downsample = 32
        im = self.transform(imgpath)
H
haoyuying 已提交
269
        h, w, c = Func.img_shape(imgpath)
270
        im_shape = paddle.to_tensor(np.array([[h, w]]).astype('int32'))
H
haoyuying 已提交
271
        label_names = Func.get_label_infos(filelist)
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        img_data = paddle.to_tensor(np.array([im]).astype('float32'))

        outputs = self(img_data)

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
            mask_anchors = []
            for m in anchor_mask:
                mask_anchors.append((self.anchors[2 * m]))
                mask_anchors.append(self.anchors[2 * m + 1])

            box, score = F.yolo_box(x=out,
                                    img_size=im_shape,
                                    anchors=mask_anchors,
                                    class_num=self.class_num,
                                    conf_thresh=self.valid_thresh,
                                    downsample_ratio=self.downsample,
                                    name="yolo_box" + str(i))

            boxes.append(box)
            scores.append(paddle.transpose(score, perm=[0, 2, 1]))
            self.downsample //= 2

        yolo_boxes = paddle.concat(boxes, axis=1)
        yolo_scores = paddle.concat(scores, axis=2)

        pred = F.multiclass_nms(bboxes=yolo_boxes,
                                scores=yolo_scores,
                                score_threshold=self.valid_thresh,
                                nms_top_k=self.nms_topk,
                                keep_top_k=self.nms_posk,
                                nms_threshold=self.nms_thresh,
                                background_label=-1)

        bboxes = pred.numpy()
        labels = bboxes[:, 0].astype('int32')
        scores = bboxes[:, 1].astype('float32')
        boxes = bboxes[:, 2:].astype('float32')

        if visualization:
H
haoyuying 已提交
312
            Func.draw_boxes_on_image(imgpath, boxes, scores, labels, label_names, 0.5)
H
haoyuying 已提交
313 314

        return boxes, scores, labels
H
haoyuying 已提交
315 316


H
haoyuying 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
class StyleTransferModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        mse_loss = nn.MSELoss()
        N, C, H, W = batch[0].shape
        batch[1] = batch[1][0].unsqueeze(0)
        self.setTarget(batch[1])

        y = self(batch[0])
        xc = paddle.to_tensor(batch[0].numpy().copy())
H
haoyuying 已提交
349 350
        y = Func.subtract_imagenet_mean_batch(y)
        xc = Func.subtract_imagenet_mean_batch(xc)
H
haoyuying 已提交
351 352 353 354 355
        features_y = self.getFeature(y)
        features_xc = self.getFeature(xc)
        f_xc_c = paddle.to_tensor(features_xc[1].numpy(), stop_gradient=True)
        content_loss = mse_loss(features_y[1], f_xc_c)

H
haoyuying 已提交
356
        batch[1] = Func.subtract_imagenet_mean_batch(batch[1])
H
haoyuying 已提交
357
        features_style = self.getFeature(batch[1])
H
haoyuying 已提交
358
        gram_style = [Func.gram_matrix(y) for y in features_style]
H
haoyuying 已提交
359 360
        style_loss = 0.
        for m in range(len(features_y)):
H
haoyuying 已提交
361
            gram_y = Func.gram_matrix(features_y[m])
H
haoyuying 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
            gram_s = paddle.to_tensor(np.tile(gram_style[m].numpy(), (N, 1, 1, 1)))
            style_loss += mse_loss(gram_y, gram_s[:N, :, :])

        loss = content_loss + style_loss

        return {'loss': loss, 'metrics': {'content gap': content_loss, 'style gap': style_loss}}

    def predict(self, origin_path: str, style_path: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Colorize images

        Args:
            origin_path(str): Content image path .
            style_path(str): Style image path.
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.

        Returns:
            output(np.ndarray) : The style transformed images with bgr mode.
        '''
        content = paddle.to_tensor(self.transform(origin_path))
        style = paddle.to_tensor(self.transform(style_path))
        content = content.unsqueeze(0)
        style = style.unsqueeze(0)

        self.setTarget(style)
        output = self(content)
        output = paddle.clip(output[0].transpose((1, 2, 0)), 0, 255).numpy()

        if visualization:
            output = output.astype(np.uint8)
            style_name = "style_" + str(time.time()) + ".png"
            if not os.path.exists(save_path):
                os.mkdir(save_path)
            path = os.path.join(save_path, style_name)
            cv2.imwrite(path, output)
        return output