cv_module.py 7.5 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
haoyuying 已提交
16 17
import time
import os
18
from typing import List
H
haoyuying 已提交
19
from collections import OrderedDict
20

W
wuzewu 已提交
21 22
import numpy as np
import paddle
H
haoyuying 已提交
23
import paddle.nn as nn
24
import paddle.nn.functional as F
H
haoyuying 已提交
25
from PIL import Image
W
wuzewu 已提交
26 27 28

from paddlehub.module.module import serving, RunModule
from paddlehub.utils.utils import base64_to_cv2
H
haoyuying 已提交
29
from paddlehub.process.transforms import ConvertColorSpace, ColorPostprocess, Resize
W
wuzewu 已提交
30 31 32 33


class ImageServing(object):
    @serving
34
    def serving_method(self, images: List[str], **kwargs) -> List[dict]:
W
wuzewu 已提交
35 36 37 38 39 40 41
        """Run as a service."""
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.predict(images=images_decode, **kwargs)
        return results


class ImageClassifierModule(RunModule, ImageServing):
42 43 44 45 46
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
W
wuzewu 已提交
47 48
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
49 50 51 52

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
W
wuzewu 已提交
53 54
        return self.validation_step(batch, batch_idx)

55 56 57 58 59
    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
W
wuzewu 已提交
60 61
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
62 63 64 65

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
W
wuzewu 已提交
66
        images = batch[0]
67
        labels = paddle.unsqueeze(batch[1], axis=-1)
W
wuzewu 已提交
68 69

        preds = self(images)
70 71 72
        loss, _ = F.softmax_with_cross_entropy(preds, labels, return_softmax=True, axis=1)
        loss = paddle.mean(loss)
        acc = paddle.metric.accuracy(preds, labels)
W
wuzewu 已提交
73 74
        return {'loss': loss, 'metrics': {'acc': acc}}

75 76 77 78 79 80 81 82 83 84 85
    def predict(self, images: List[np.ndarray], top_k: int = 1) -> List[dict]:
        '''
        Predict images

        Args:
            images(list[numpy.ndarray]) : Images to be predicted, consist of np.ndarray in bgr format.
            top_k(int) : Output top k result of each image.

        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
W
wuzewu 已提交
86 87 88
        images = self.transforms(images)
        if len(images.shape) == 3:
            images = images[np.newaxis, :]
W
wuzewu 已提交
89
        preds = self(paddle.to_tensor(images))
90
        preds = F.softmax(preds, axis=1).numpy()
W
wuzewu 已提交
91 92 93 94 95 96 97 98 99
        pred_idxs = np.argsort(preds)[::-1][:, :top_k]
        res = []
        for i, pred in enumerate(pred_idxs):
            res_dict = {}
            for k in pred:
                class_name = self.labels[int(k)]
                res_dict[class_name] = preds[i][k]
            res.append(res_dict)
        return res
H
haoyuying 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192


class ImageColorizeModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.
        
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
            
        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.
        
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
            
        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        out_class, out_reg = self(batch[0], batch[1], batch[2])
        
        criterionCE = nn.loss.CrossEntropyLoss()
        loss_ce = criterionCE(out_class, batch[4][:, 0, :, :])
        loss_G_L1_reg = paddle.sum(paddle.abs(batch[3] - out_reg), axis=1, keepdim=True)
        loss_G_L1_reg = paddle.mean(loss_G_L1_reg)
        loss = loss_ce + loss_G_L1_reg
        
        visual_ret = OrderedDict()
        psnrs = []
        lab2rgb = ConvertColorSpace(mode='LAB2RGB')
        process = ColorPostprocess()
        for i in range(batch[0].numpy().shape[0]):
            real = lab2rgb(np.concatenate((batch[0].numpy(), batch[3].numpy()), axis=1))[i]
            visual_ret['real'] = process(real)
            fake = lab2rgb(np.concatenate((batch[0].numpy(), out_reg.numpy()), axis=1))[i]
            visual_ret['fake_reg'] = process(fake)
            mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0) ** 2)
            psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            psnrs.append(psnr_value)
        psnr = paddle.to_variable(np.array(psnrs))
        return {'loss': loss, 'metrics': {'psnr': psnr}}

    def predict(self, images: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Colorize images
        
        Args:
            images(str) : Images path to be colorized.
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.
            
        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
        lab2rgb = ConvertColorSpace(mode='LAB2RGB')
        process = ColorPostprocess()
        resize = Resize((256, 256))
        visual_ret = OrderedDict()
        im = self.transforms(images, is_train=False)
        out_class, out_reg = self(paddle.to_tensor(im['A']), paddle.to_variable(im['hint_B']),
                                  paddle.to_variable(im['mask_B']))
        result = []

        for i in range(im['A'].shape[0]):
            gray = lab2rgb(np.concatenate((im['A'], np.zeros(im['B'].shape)), axis=1))[i]
            visual_ret['gray'] = resize(process(gray))
            hint = lab2rgb(np.concatenate((im['A'], im['hint_B']), axis=1))[i]
            visual_ret['hint'] = resize(process(hint))
            real = lab2rgb(np.concatenate((im['A'], im['B']), axis=1))[i]
            visual_ret['real'] = resize(process(real))
            fake = lab2rgb(np.concatenate((im['A'], out_reg.numpy()), axis=1))[i]
            visual_ret['fake_reg'] = resize(process(fake))
            
            if visualization:
                fake_name = "fake_" + str(time.time()) + ".png"
                if not os.path.exists(save_path):
                    os.mkdir(save_path)
                fake_path = os.path.join(save_path, fake_name)
                visual_gray = Image.fromarray(visual_ret['fake_reg'])
                visual_gray.save(fake_path)
                
            mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0) ** 2)
            psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            result.append(visual_ret)
        return result