makeup_model.py 17.5 KB
Newer Older
Q
qingqing01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
lijianshe02 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import os
L
LielinJiang 已提交
15
import numpy as np
L
lijianshe02 已提交
16

L
lijianshe02 已提交
17
import paddle
18

L
LielinJiang 已提交
19
from paddle.vision.models import vgg16
20
from paddle.utils.download import get_path_from_url
L
lijianshe02 已提交
21 22 23 24 25
from .base_model import BaseModel

from .builder import MODELS
from .generators.builder import build_generator
from .discriminators.builder import build_discriminator
26
from .criterions import build_criterion
L
lijianshe02 已提交
27
from ..modules.init import init_weights
L
lijianshe02 已提交
28 29 30
from ..utils.image_pool import ImagePool
from ..utils.preprocess import *

31 32
VGGFACE_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/vggface.pdparams'

L
lijianshe02 已提交
33 34 35 36

@MODELS.register()
class MakeupModel(BaseModel):
    """
L
LielinJiang 已提交
37
    PSGAN paper: https://arxiv.org/pdf/1909.06956.pdf
L
lijianshe02 已提交
38
    """
39 40 41 42 43 44 45 46 47 48 49 50 51
    def __init__(self,
                 generator,
                 discriminator=None,
                 cycle_criterion=None,
                 idt_criterion=None,
                 gan_criterion=None,
                 l1_criterion=None,
                 l2_criterion=None,
                 pool_size=50,
                 direction='a2b',
                 lambda_a=10.,
                 lambda_b=10.,
                 is_train=True):
L
LielinJiang 已提交
52
        """Initialize the PSGAN class.
L
lijianshe02 已提交
53 54

        Parameters:
L
LielinJiang 已提交
55
            cfg (dict)-- config of model.
L
lijianshe02 已提交
56
        """
57 58 59 60
        super(MakeupModel, self).__init__()
        self.lambda_a = lambda_a
        self.lambda_b = lambda_b
        self.is_train = is_train
L
lijianshe02 已提交
61 62 63
        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
64
        self.nets['netG'] = build_generator(generator)
L
LielinJiang 已提交
65
        init_weights(self.nets['netG'], init_type='xavier', init_gain=1.0)
L
lijianshe02 已提交
66

L
LielinJiang 已提交
67
        if self.is_train:  # define discriminators
68
            vgg = vgg16(pretrained=False)
L
LielinJiang 已提交
69
            self.vgg = vgg.features
70 71 72 73 74
            cur_path = os.path.abspath(os.path.dirname(__file__))
            vgg_weight_path = get_path_from_url(VGGFACE_WEIGHT_URL, cur_path)
            param = paddle.load(vgg_weight_path)
            vgg.load_dict(param)

75 76
            self.nets['netD_A'] = build_discriminator(discriminator)
            self.nets['netD_B'] = build_discriminator(discriminator)
L
LielinJiang 已提交
77 78
            init_weights(self.nets['netD_A'], init_type='xavier', init_gain=1.0)
            init_weights(self.nets['netD_B'], init_type='xavier', init_gain=1.0)
L
lijianshe02 已提交
79

80 81 82 83
            # create image buffer to store previously generated images
            self.fake_A_pool = ImagePool(pool_size)
            self.fake_B_pool = ImagePool(pool_size)

L
lijianshe02 已提交
84
            # define loss functions
85 86 87 88 89 90 91 92 93 94 95 96
            if gan_criterion:
                self.gan_criterion = build_criterion(gan_criterion)
            if cycle_criterion:
                self.cycle_criterion = build_criterion(cycle_criterion)
            if idt_criterion:
                self.idt_criterion = build_criterion(idt_criterion)
            if l1_criterion:
                self.l1_criterion = build_criterion(l1_criterion)
            if l2_criterion:
                self.l2_criterion = build_criterion(l2_criterion)

    def setup_input(self, input):
L
lijianshe02 已提交
97 98
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

99
        Args:
L
lijianshe02 已提交
100 101 102 103 104 105 106 107 108 109 110
            input (dict): include the data itself and its metadata information.

        """
        self.real_A = paddle.to_tensor(input['image_A'])
        self.real_B = paddle.to_tensor(input['image_B'])
        self.c_m = paddle.to_tensor(input['consis_mask'])
        self.P_A = paddle.to_tensor(input['P_A'])
        self.P_B = paddle.to_tensor(input['P_B'])
        self.mask_A_aug = paddle.to_tensor(input['mask_A_aug'])
        self.mask_B_aug = paddle.to_tensor(input['mask_B_aug'])
        self.c_m_t = paddle.transpose(self.c_m, perm=[0, 2, 1])
L
LielinJiang 已提交
111
        if self.is_train:
L
lijianshe02 已提交
112 113 114 115 116 117 118
            self.mask_A = paddle.to_tensor(input['mask_A'])
            self.mask_B = paddle.to_tensor(input['mask_B'])
            self.c_m_idt_a = paddle.to_tensor(input['consis_mask_idt_A'])
            self.c_m_idt_b = paddle.to_tensor(input['consis_mask_idt_B'])

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
L
LielinJiang 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        self.fake_A, amm = self.nets['netG'](self.real_A, self.real_B, self.P_A,
                                             self.P_B, self.c_m,
                                             self.mask_A_aug,
                                             self.mask_B_aug)  # G_A(A)
        self.fake_B, _ = self.nets['netG'](self.real_B, self.real_A, self.P_B,
                                           self.P_A, self.c_m_t,
                                           self.mask_A_aug,
                                           self.mask_B_aug)  # G_A(A)
        self.rec_A, _ = self.nets['netG'](self.fake_A, self.real_A, self.P_A,
                                          self.P_A, self.c_m_idt_a,
                                          self.mask_A_aug,
                                          self.mask_B_aug)  # G_A(A)
        self.rec_B, _ = self.nets['netG'](self.fake_B, self.real_B, self.P_B,
                                          self.P_B, self.c_m_idt_b,
                                          self.mask_A_aug,
                                          self.mask_B_aug)  # G_A(A)

        # visual
        self.visual_items['real_A'] = self.real_A
        self.visual_items['fake_B'] = self.fake_B
        self.visual_items['rec_A'] = self.rec_A
        self.visual_items['real_B'] = self.real_B
        self.visual_items['fake_A'] = self.fake_A
        self.visual_items['rec_B'] = self.rec_B
L
lijianshe02 已提交
143

144 145 146 147 148 149 150
    def test(self, input):
        with paddle.no_grad():
            return self.nets['netG'](input['image_A'], input['image_B'],
                                     input['P_A'], input['P_B'],
                                     input['consis_mask'], input['mask_A_aug'],
                                     input['mask_B_aug'])

L
lijianshe02 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163
    def backward_D_basic(self, netD, real, fake):
        """Calculate GAN loss for the discriminator

        Parameters:
            netD (network)      -- the discriminator D
            real (tensor array) -- real images
            fake (tensor array) -- images generated by a generator

        Return the discriminator loss.
        We also call loss_D.backward() to calculate the gradients.
        """
        # Real
        pred_real = netD(real)
164
        loss_D_real = self.gan_criterion(pred_real, True)
L
lijianshe02 已提交
165 166
        # Fake
        pred_fake = netD(fake.detach())
167
        loss_D_fake = self.gan_criterion(pred_fake, False)
L
lijianshe02 已提交
168 169 170 171 172 173 174 175
        # Combined loss and calculate gradients
        loss_D = (loss_D_real + loss_D_fake) * 0.5
        loss_D.backward()
        return loss_D

    def backward_D_A(self):
        """Calculate GAN loss for discriminator D_A"""
        fake_B = self.fake_B_pool.query(self.fake_B)
L
LielinJiang 已提交
176 177
        self.loss_D_A = self.backward_D_basic(self.nets['netD_A'], self.real_B,
                                              fake_B)
L
lijianshe02 已提交
178
        self.losses['D_A_loss'] = self.loss_D_A
L
lijianshe02 已提交
179 180 181 182

    def backward_D_B(self):
        """Calculate GAN loss for discriminator D_B"""
        fake_A = self.fake_A_pool.query(self.fake_A)
L
LielinJiang 已提交
183 184
        self.loss_D_B = self.backward_D_basic(self.nets['netD_B'], self.real_A,
                                              fake_A)
L
lijianshe02 已提交
185
        self.losses['D_B_loss'] = self.loss_D_B
L
lijianshe02 已提交
186 187 188

    def backward_G(self):
        """Calculate the loss for generators G_A and G_B"""
L
LielinJiang 已提交
189

190 191
        lambda_A = self.lambda_a
        lambda_B = self.lambda_b
L
lijianshe02 已提交
192
        lambda_vgg = 5e-3
193

L
lijianshe02 已提交
194
        # Identity loss
195
        if self.idt_criterion:
L
LielinJiang 已提交
196 197 198 199
            self.idt_A, _ = self.nets['netG'](self.real_A, self.real_A,
                                              self.P_A, self.P_A,
                                              self.c_m_idt_a, self.mask_A_aug,
                                              self.mask_B_aug)  # G_A(A)
200 201
            self.loss_idt_A = self.idt_criterion(self.idt_A,
                                                 self.real_A) * lambda_A
L
LielinJiang 已提交
202 203 204 205
            self.idt_B, _ = self.nets['netG'](self.real_B, self.real_B,
                                              self.P_B, self.P_B,
                                              self.c_m_idt_b, self.mask_A_aug,
                                              self.mask_B_aug)  # G_A(A)
206 207
            self.loss_idt_B = self.idt_criterion(self.idt_B,
                                                 self.real_B) * lambda_B
L
LielinJiang 已提交
208 209 210 211

            # visual
            self.visual_items['idt_A'] = self.idt_A
            self.visual_items['idt_B'] = self.idt_B
L
lijianshe02 已提交
212 213 214 215 216
        else:
            self.loss_idt_A = 0
            self.loss_idt_B = 0

        # GAN loss D_A(G_A(A))
217 218
        self.loss_G_A = self.gan_criterion(self.nets['netD_A'](self.fake_A),
                                           True)
L
lijianshe02 已提交
219
        # GAN loss D_B(G_B(B))
220 221
        self.loss_G_B = self.gan_criterion(self.nets['netD_B'](self.fake_B),
                                           True)
L
lijianshe02 已提交
222
        # Forward cycle loss || G_B(G_A(A)) - A||
223 224
        self.loss_cycle_A = self.cycle_criterion(self.rec_A,
                                                 self.real_A) * lambda_A
L
lijianshe02 已提交
225
        # Backward cycle loss || G_A(G_B(B)) - B||
226 227
        self.loss_cycle_B = self.cycle_criterion(self.rec_B,
                                                 self.real_B) * lambda_B
L
lijianshe02 已提交
228

L
lijianshe02 已提交
229 230
        self.losses['G_A_adv_loss'] = self.loss_G_A
        self.losses['G_B_adv_loss'] = self.loss_G_B
231

L
lijianshe02 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        mask_A_lip = self.mask_A_aug[:, 0].unsqueeze(1)
        mask_B_lip = self.mask_B_aug[:, 0].unsqueeze(1)

        mask_A_lip_np = mask_A_lip.numpy().squeeze()
        mask_B_lip_np = mask_B_lip.numpy().squeeze()
        mask_A_lip_np, mask_B_lip_np, index_A_lip, index_B_lip = mask_preprocess(
            mask_A_lip_np, mask_B_lip_np)
        real_A = paddle.nn.clip((self.real_A + 1.0) / 2.0, 0.0, 1.0) * 255.0
        real_A_np = real_A.numpy().squeeze()
        real_B = paddle.nn.clip((self.real_B + 1.0) / 2.0, 0.0, 1.0) * 255.0
        real_B_np = real_B.numpy().squeeze()
        fake_A = paddle.nn.clip((self.fake_A + 1.0) / 2.0, 0.0, 1.0) * 255.0
        fake_A_np = fake_A.numpy().squeeze()
        fake_B = paddle.nn.clip((self.fake_B + 1.0) / 2.0, 0.0, 1.0) * 255.0
        fake_B_np = fake_B.numpy().squeeze()

        fake_match_lip_A = hisMatch(fake_A_np, real_B_np, mask_A_lip_np,
                                    mask_B_lip_np, index_A_lip)
        fake_match_lip_B = hisMatch(fake_B_np, real_A_np, mask_B_lip_np,
                                    mask_A_lip_np, index_B_lip)
        fake_match_lip_A = paddle.to_tensor(fake_match_lip_A)
        fake_match_lip_A.stop_gradient = True
        fake_match_lip_A = fake_match_lip_A.unsqueeze(0)
        fake_match_lip_B = paddle.to_tensor(fake_match_lip_B)
        fake_match_lip_B.stop_gradient = True
        fake_match_lip_B = fake_match_lip_B.unsqueeze(0)
        fake_A_lip_masked = fake_A * mask_A_lip
        fake_B_lip_masked = fake_B * mask_B_lip
260 261 262 263
        g_A_lip_loss_his = self.l1_criterion(fake_A_lip_masked,
                                             fake_match_lip_A)
        g_B_lip_loss_his = self.l1_criterion(fake_B_lip_masked,
                                             fake_match_lip_B)
L
lijianshe02 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

        #skin
        mask_A_skin = self.mask_A_aug[:, 1].unsqueeze(1)
        mask_B_skin = self.mask_B_aug[:, 1].unsqueeze(1)

        mask_A_skin_np = mask_A_skin.numpy().squeeze()
        mask_B_skin_np = mask_B_skin.numpy().squeeze()
        mask_A_skin_np, mask_B_skin_np, index_A_skin, index_B_skin = mask_preprocess(
            mask_A_skin_np, mask_B_skin_np)

        fake_match_skin_A = hisMatch(fake_A_np, real_B_np, mask_A_skin_np,
                                     mask_B_skin_np, index_A_skin)
        fake_match_skin_B = hisMatch(fake_B_np, real_A_np, mask_B_skin_np,
                                     mask_A_skin_np, index_B_skin)
        fake_match_skin_A = paddle.to_tensor(fake_match_skin_A)
        fake_match_skin_A.stop_gradient = True
        fake_match_skin_A = fake_match_skin_A.unsqueeze(0)
        fake_match_skin_B = paddle.to_tensor(fake_match_skin_B)
        fake_match_skin_B.stop_gradient = True
        fake_match_skin_B = fake_match_skin_B.unsqueeze(0)
        fake_A_skin_masked = fake_A * mask_A_skin
        fake_B_skin_masked = fake_B * mask_B_skin
286 287 288 289
        g_A_skin_loss_his = self.l1_criterion(fake_A_skin_masked,
                                              fake_match_skin_A)
        g_B_skin_loss_his = self.l1_criterion(fake_B_skin_masked,
                                              fake_match_skin_B)
L
lijianshe02 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

        #eye
        mask_A_eye = self.mask_A_aug[:, 2].unsqueeze(1)
        mask_B_eye = self.mask_B_aug[:, 2].unsqueeze(1)

        mask_A_eye_np = mask_A_eye.numpy().squeeze()
        mask_B_eye_np = mask_B_eye.numpy().squeeze()
        mask_A_eye_np, mask_B_eye_np, index_A_eye, index_B_eye = mask_preprocess(
            mask_A_eye_np, mask_B_eye_np)

        fake_match_eye_A = hisMatch(fake_A_np, real_B_np, mask_A_eye_np,
                                    mask_B_eye_np, index_A_eye)
        fake_match_eye_B = hisMatch(fake_B_np, real_A_np, mask_B_eye_np,
                                    mask_A_eye_np, index_B_eye)
        fake_match_eye_A = paddle.to_tensor(fake_match_eye_A)
        fake_match_eye_A.stop_gradient = True
        fake_match_eye_A = fake_match_eye_A.unsqueeze(0)
        fake_match_eye_B = paddle.to_tensor(fake_match_eye_B)
        fake_match_eye_B.stop_gradient = True
        fake_match_eye_B = fake_match_eye_B.unsqueeze(0)
        fake_A_eye_masked = fake_A * mask_A_eye
        fake_B_eye_masked = fake_B * mask_B_eye
312 313 314 315
        g_A_eye_loss_his = self.l1_criterion(fake_A_eye_masked,
                                             fake_match_eye_A)
        g_B_eye_loss_his = self.l1_criterion(fake_B_eye_masked,
                                             fake_match_eye_B)
L
lijianshe02 已提交
316 317

        self.loss_G_A_his = (g_A_eye_loss_his + g_A_lip_loss_his +
L
lijianshe02 已提交
318
                             g_A_skin_loss_his * 0.1) * 0.1
L
lijianshe02 已提交
319
        self.loss_G_B_his = (g_B_eye_loss_his + g_B_lip_loss_his +
L
lijianshe02 已提交
320
                             g_B_skin_loss_his * 0.1) * 0.1
L
lijianshe02 已提交
321

L
lijianshe02 已提交
322
        self.losses['G_A_his_loss'] = self.loss_G_A_his
323
        self.losses['G_B_his_loss'] = self.loss_G_B_his
L
lijianshe02 已提交
324 325 326 327 328

        #vgg loss
        vgg_s = self.vgg(self.real_A)
        vgg_s.stop_gradient = True
        vgg_fake_A = self.vgg(self.fake_A)
329 330
        self.loss_A_vgg = self.l2_criterion(vgg_fake_A,
                                            vgg_s) * lambda_A * lambda_vgg
L
lijianshe02 已提交
331 332 333 334

        vgg_r = self.vgg(self.real_B)
        vgg_r.stop_gradient = True
        vgg_fake_B = self.vgg(self.fake_B)
335 336
        self.loss_B_vgg = self.l2_criterion(vgg_fake_B,
                                            vgg_r) * lambda_B * lambda_vgg
L
lijianshe02 已提交
337

L
lijianshe02 已提交
338 339 340
        self.loss_rec = (self.loss_cycle_A * 0.2 + self.loss_cycle_B * 0.2 +
                         self.loss_A_vgg + self.loss_B_vgg) * 0.5
        self.loss_idt = (self.loss_idt_A + self.loss_idt_B) * 0.1
L
lijianshe02 已提交
341

L
lijianshe02 已提交
342 343 344 345
        self.losses['G_A_vgg_loss'] = self.loss_A_vgg
        self.losses['G_B_vgg_loss'] = self.loss_B_vgg
        self.losses['G_rec_loss'] = self.loss_rec
        self.losses['G_idt_loss'] = self.loss_idt
346

L
lijianshe02 已提交
347 348 349 350 351 352
        # bg consistency loss
        mask_A_consis = paddle.cast(
            (self.mask_A == 0), dtype='float32') + paddle.cast(
                (self.mask_A == 10), dtype='float32') + paddle.cast(
                    (self.mask_A == 8), dtype='float32')
        mask_A_consis = paddle.unsqueeze(paddle.clip(mask_A_consis, 0, 1), 1)
353
        self.loss_G_bg_consis = self.l1_criterion(
354
            self.real_A * mask_A_consis, self.fake_A * mask_A_consis) * 0.1
L
lijianshe02 已提交
355 356 357 358 359

        # combined loss and calculate gradients
        self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_rec + self.loss_idt + self.loss_G_A_his + self.loss_G_B_his + self.loss_G_bg_consis
        self.loss_G.backward()

360
    def train_iter(self, optimizers=None):
L
lijianshe02 已提交
361 362 363 364 365
        """Calculate losses, gradients, and update network weights; called in every training iteration"""
        # forward
        self.forward()  # compute fake images and reconstruction images.
        # G_A and G_B
        self.set_requires_grad(
L
LielinJiang 已提交
366
            [self.nets['netD_A'], self.nets['netD_B']],
L
lijianshe02 已提交
367 368 369
            False)  # Ds require no gradients when optimizing Gs
        # self.optimizer_G.clear_gradients() #zero_grad()  # set G_A and G_B's gradients to zero
        self.backward_G()  # calculate gradients for G_A and G_B
L
LielinJiang 已提交
370
        self.optimizers['optimizer_G'].minimize(
L
lijianshe02 已提交
371
            self.loss_G)  #step()       # update G_A and G_B's weights
L
LielinJiang 已提交
372
        self.optimizers['optimizer_G'].clear_gradients()
L
lijianshe02 已提交
373
        # D_A and D_B
L
LielinJiang 已提交
374
        self.set_requires_grad(self.nets['netD_A'], True)
L
lijianshe02 已提交
375 376
        # self.optimizer_D.clear_gradients() #zero_grad()   # set D_A and D_B's gradients to zero
        self.backward_D_A()  # calculate gradients for D_A
L
LielinJiang 已提交
377
        self.optimizers['optimizer_DA'].minimize(
L
lijianshe02 已提交
378
            self.loss_D_A)  #step()  # update D_A and D_B's weights
L
LielinJiang 已提交
379 380
        self.optimizers['optimizer_DA'].clear_gradients()  #zero_g
        self.set_requires_grad(self.nets['netD_B'], True)
L
lijianshe02 已提交
381 382

        self.backward_D_B()  # calculate graidents for D_B
L
LielinJiang 已提交
383
        self.optimizers['optimizer_DB'].minimize(
L
lijianshe02 已提交
384
            self.loss_D_B)  #step()  # update D_A and D_B's weights
385
        self.optimizers['optimizer_DB'].clear_gradients()