makeup_model.py 19.0 KB
Newer Older
L
lijianshe02 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
lijianshe02 已提交
15 16 17 18 19 20 21 22 23
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from .base_model import BaseModel

from .builder import MODELS
from .generators.builder import build_generator
from .discriminators.builder import build_discriminator
from .losses import GANLoss
L
lijianshe02 已提交
24
from ..modules.init import init_weights
L
lijianshe02 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
from ..solver import build_optimizer
from ..utils.image_pool import ImagePool
from ..utils.preprocess import *
from ..datasets.makeup_dataset import MakeupDataset
import numpy as np
from .vgg import vgg16


@MODELS.register()
class MakeupModel(BaseModel):
    """
    This class implements the CycleGAN model, for learning image-to-image translation without paired data.

    The model training requires '--dataset_mode unaligned' dataset.
    By default, it uses a '--netG resnet_9blocks' ResNet generator,
    a '--netD basic' discriminator (PatchGAN introduced by pix2pix),
    and a least-square GANs objective ('--gan_mode lsgan').

    CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf
    """
    def __init__(self, opt):
        """Initialize the CycleGAN class.

        Parameters:
            opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
        """
        BaseModel.__init__(self, opt)
        # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
        self.loss_names = [
            'D_A',
            'G_A',
            'rec',
            'idt',
            'D_B',
            'G_B',
            'G_A_his',
            'G_B_his',
            'G_bg_consis',
            'A_vgg',
            'B_vgg',
        ]
        # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
        visual_names_A = ['real_A', 'fake_A', 'rec_A']
        visual_names_B = ['real_B', 'fake_B', 'rec_B']
        if self.isTrain and self.opt.lambda_identity > 0.0:  # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B)
            visual_names_A.append('idt_B')
            visual_names_B.append('idt_A')

        self.visual_names = visual_names_A + visual_names_B  # combine visualizations for A and B
        self.vgg = vgg16(pretrained=True)
        # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
        if self.isTrain:
            self.model_names = ['G', 'D_A', 'D_B']
        else:  # during test time, only load Gs
            self.model_names = ['G']

        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
        self.netG = build_generator(opt.model.generator)
L
lijianshe02 已提交
85
        init_weights(self.netG, init_type='xavier', init_gain=1.0)
L
lijianshe02 已提交
86 87 88 89

        if self.isTrain:  # define discriminators
            self.netD_A = build_discriminator(opt.model.discriminator)
            self.netD_B = build_discriminator(opt.model.discriminator)
L
lijianshe02 已提交
90 91
            init_weights(self.netD_A, init_type='xavier', init_gain=1.0)
            init_weights(self.netD_B, init_type='xavier', init_gain=1.0)
L
lijianshe02 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

        if self.isTrain:
            self.fake_A_pool = ImagePool(
                opt.dataset.train.pool_size
            )  # create image buffer to store previously generated images
            self.fake_B_pool = ImagePool(
                opt.dataset.train.pool_size
            )  # create image buffer to store previously generated images
            # define loss functions
            self.criterionGAN = GANLoss(
                opt.model.gan_mode)  #.to(self.device)  # define GAN loss.
            self.criterionCycle = paddle.nn.L1Loss()
            self.criterionIdt = paddle.nn.L1Loss()
            self.criterionL1 = paddle.nn.L1Loss()
            self.criterionL2 = paddle.nn.MSELoss()

            self.build_lr_scheduler()
            self.optimizer_G = build_optimizer(
                opt.optimizer,
                self.lr_scheduler,
                parameter_list=self.netG.parameters())
            # self.optimizer_D = paddle.optimizer.Adam(learning_rate=lr_scheduler_d, parameter_list=self.netD_A.parameters() + self.netD_B.parameters(), beta1=opt.beta1)
            self.optimizer_DA = build_optimizer(
                opt.optimizer,
                self.lr_scheduler,
                parameter_list=self.netD_A.parameters())
            self.optimizer_DB = build_optimizer(
                opt.optimizer,
                self.lr_scheduler,
                parameter_list=self.netD_B.parameters())
            self.optimizers.append(self.optimizer_G)
            # self.optimizers.append(self.optimizer_D)
            self.optimizers.append(self.optimizer_DA)
            self.optimizers.append(self.optimizer_DB)
            self.optimizer_names.extend(
                ['optimizer_G', 'optimizer_DA', 'optimizer_DB'])

    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

        Parameters:
            input (dict): include the data itself and its metadata information.

        The option 'direction' can be used to swap domain A and domain B.
        """
        self.real_A = paddle.to_tensor(input['image_A'])
        self.real_B = paddle.to_tensor(input['image_B'])
        self.c_m = paddle.to_tensor(input['consis_mask'])
        self.P_A = paddle.to_tensor(input['P_A'])
        self.P_B = paddle.to_tensor(input['P_B'])
        self.mask_A_aug = paddle.to_tensor(input['mask_A_aug'])
        self.mask_B_aug = paddle.to_tensor(input['mask_B_aug'])
        self.c_m_t = paddle.transpose(self.c_m, perm=[0, 2, 1])
        if self.isTrain:
            self.mask_A = paddle.to_tensor(input['mask_A'])
            self.mask_B = paddle.to_tensor(input['mask_B'])
            self.c_m_idt_a = paddle.to_tensor(input['consis_mask_idt_A'])
            self.c_m_idt_b = paddle.to_tensor(input['consis_mask_idt_B'])

        #self.hm_gt_A = self.hm_gt_A_lip + self.hm_gt_A_skin + self.hm_gt_A_eye
        #self.hm_gt_B = self.hm_gt_B_lip + self.hm_gt_B_skin + self.hm_gt_B_eye

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        self.fake_A, amm = self.netG(self.real_A, self.real_B, self.P_A,
                                     self.P_B, self.c_m, self.mask_A_aug,
                                     self.mask_B_aug)  # G_A(A)
        self.fake_B, _ = self.netG(self.real_B, self.real_A, self.P_B, self.P_A,
                                   self.c_m_t, self.mask_A_aug,
                                   self.mask_B_aug)  # G_A(A)
        self.rec_A, _ = self.netG(self.fake_A, self.real_A, self.P_A, self.P_A,
                                  self.c_m_idt_a, self.mask_A_aug,
                                  self.mask_B_aug)  # G_A(A)
        self.rec_B, _ = self.netG(self.fake_B, self.real_B, self.P_B, self.P_B,
                                  self.c_m_idt_b, self.mask_A_aug,
                                  self.mask_B_aug)  # G_A(A)

    def forward_test(self, input):
        '''
        not implement now
        '''
        return self.netG(input['image_A'], input['image_B'], input['P_A'],
                         input['P_B'], input['consis_mask'],
                         input['mask_A_aug'], input['mask_B_aug'])

    def test(self, input):
        """Forward function used in test time.

        This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
        It also calls <compute_visuals> to produce additional visualization results
        """
        with paddle.no_grad():
            return self.forward_test(input)

    def backward_D_basic(self, netD, real, fake):
        """Calculate GAN loss for the discriminator

        Parameters:
            netD (network)      -- the discriminator D
            real (tensor array) -- real images
            fake (tensor array) -- images generated by a generator

        Return the discriminator loss.
        We also call loss_D.backward() to calculate the gradients.
        """
        # Real
        pred_real = netD(real)
        loss_D_real = self.criterionGAN(pred_real, True)
        # Fake
        pred_fake = netD(fake.detach())
        loss_D_fake = self.criterionGAN(pred_fake, False)
        # Combined loss and calculate gradients
        loss_D = (loss_D_real + loss_D_fake) * 0.5
        loss_D.backward()
        return loss_D

    def backward_D_A(self):
        """Calculate GAN loss for discriminator D_A"""
        fake_B = self.fake_B_pool.query(self.fake_B)
        self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)

    def backward_D_B(self):
        """Calculate GAN loss for discriminator D_B"""
        fake_A = self.fake_A_pool.query(self.fake_A)
        self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)

    def backward_G(self):
        """Calculate the loss for generators G_A and G_B"""
        '''
        self.loss_names = [
                'G_A_vgg',
                'G_B_vgg',
                'G_bg_consis'
                ]
        # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
        visual_names_A = ['real_A', 'fake_B', 'rec_A', 'amm_a']
        visual_names_B = ['real_B', 'fake_A', 'rec_B', 'amm_b']
        '''
        lambda_idt = self.opt.lambda_identity
        lambda_A = self.opt.lambda_A
        lambda_B = self.opt.lambda_B
        lambda_vgg = 5e-3
        # Identity loss
        if lambda_idt > 0:
            self.idt_A, _ = self.netG(self.real_A, self.real_A, self.P_A,
                                      self.P_A, self.c_m_idt_a, self.mask_A_aug,
                                      self.mask_B_aug)  # G_A(A)
            self.loss_idt_A = self.criterionIdt(
                self.idt_A, self.real_A) * lambda_A * lambda_idt
            self.idt_B, _ = self.netG(self.real_B, self.real_B, self.P_B,
                                      self.P_B, self.c_m_idt_b, self.mask_A_aug,
                                      self.mask_B_aug)  # G_A(A)
            self.loss_idt_B = self.criterionIdt(
                self.idt_B, self.real_B) * lambda_B * lambda_idt
        else:
            self.loss_idt_A = 0
            self.loss_idt_B = 0

        # GAN loss D_A(G_A(A))
        self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_A), True)
        # GAN loss D_B(G_B(B))
        self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_B), True)
        # Forward cycle loss || G_B(G_A(A)) - A||
        self.loss_cycle_A = self.criterionCycle(self.rec_A,
                                                self.real_A) * lambda_A
        # Backward cycle loss || G_A(G_B(B)) - B||
        self.loss_cycle_B = self.criterionCycle(self.rec_B,
                                                self.real_B) * lambda_B

        mask_A_lip = self.mask_A_aug[:, 0].unsqueeze(1)
        mask_B_lip = self.mask_B_aug[:, 0].unsqueeze(1)

        mask_A_lip_np = mask_A_lip.numpy().squeeze()
        mask_B_lip_np = mask_B_lip.numpy().squeeze()
        mask_A_lip_np, mask_B_lip_np, index_A_lip, index_B_lip = mask_preprocess(
            mask_A_lip_np, mask_B_lip_np)
        real_A = paddle.nn.clip((self.real_A + 1.0) / 2.0, 0.0, 1.0) * 255.0
        real_A_np = real_A.numpy().squeeze()
        real_B = paddle.nn.clip((self.real_B + 1.0) / 2.0, 0.0, 1.0) * 255.0
        real_B_np = real_B.numpy().squeeze()
        fake_A = paddle.nn.clip((self.fake_A + 1.0) / 2.0, 0.0, 1.0) * 255.0
        fake_A_np = fake_A.numpy().squeeze()
        fake_B = paddle.nn.clip((self.fake_B + 1.0) / 2.0, 0.0, 1.0) * 255.0
        fake_B_np = fake_B.numpy().squeeze()

        fake_match_lip_A = hisMatch(fake_A_np, real_B_np, mask_A_lip_np,
                                    mask_B_lip_np, index_A_lip)
        fake_match_lip_B = hisMatch(fake_B_np, real_A_np, mask_B_lip_np,
                                    mask_A_lip_np, index_B_lip)
        fake_match_lip_A = paddle.to_tensor(fake_match_lip_A)
        fake_match_lip_A.stop_gradient = True
        fake_match_lip_A = fake_match_lip_A.unsqueeze(0)
        fake_match_lip_B = paddle.to_tensor(fake_match_lip_B)
        fake_match_lip_B.stop_gradient = True
        fake_match_lip_B = fake_match_lip_B.unsqueeze(0)
        fake_A_lip_masked = fake_A * mask_A_lip
        fake_B_lip_masked = fake_B * mask_B_lip
        g_A_lip_loss_his = self.criterionL1(fake_A_lip_masked, fake_match_lip_A)
        g_B_lip_loss_his = self.criterionL1(fake_B_lip_masked, fake_match_lip_B)

        #skin
        mask_A_skin = self.mask_A_aug[:, 1].unsqueeze(1)
        mask_B_skin = self.mask_B_aug[:, 1].unsqueeze(1)

        mask_A_skin_np = mask_A_skin.numpy().squeeze()
        mask_B_skin_np = mask_B_skin.numpy().squeeze()
        mask_A_skin_np, mask_B_skin_np, index_A_skin, index_B_skin = mask_preprocess(
            mask_A_skin_np, mask_B_skin_np)

        fake_match_skin_A = hisMatch(fake_A_np, real_B_np, mask_A_skin_np,
                                     mask_B_skin_np, index_A_skin)
        fake_match_skin_B = hisMatch(fake_B_np, real_A_np, mask_B_skin_np,
                                     mask_A_skin_np, index_B_skin)
        fake_match_skin_A = paddle.to_tensor(fake_match_skin_A)
        fake_match_skin_A.stop_gradient = True
        fake_match_skin_A = fake_match_skin_A.unsqueeze(0)
        fake_match_skin_B = paddle.to_tensor(fake_match_skin_B)
        fake_match_skin_B.stop_gradient = True
        fake_match_skin_B = fake_match_skin_B.unsqueeze(0)
        fake_A_skin_masked = fake_A * mask_A_skin
        fake_B_skin_masked = fake_B * mask_B_skin
        g_A_skin_loss_his = self.criterionL1(fake_A_skin_masked,
                                             fake_match_skin_A)
        g_B_skin_loss_his = self.criterionL1(fake_B_skin_masked,
                                             fake_match_skin_B)

        #eye
        mask_A_eye = self.mask_A_aug[:, 2].unsqueeze(1)
        mask_B_eye = self.mask_B_aug[:, 2].unsqueeze(1)

        mask_A_eye_np = mask_A_eye.numpy().squeeze()
        mask_B_eye_np = mask_B_eye.numpy().squeeze()
        mask_A_eye_np, mask_B_eye_np, index_A_eye, index_B_eye = mask_preprocess(
            mask_A_eye_np, mask_B_eye_np)

        fake_match_eye_A = hisMatch(fake_A_np, real_B_np, mask_A_eye_np,
                                    mask_B_eye_np, index_A_eye)
        fake_match_eye_B = hisMatch(fake_B_np, real_A_np, mask_B_eye_np,
                                    mask_A_eye_np, index_B_eye)
        fake_match_eye_A = paddle.to_tensor(fake_match_eye_A)
        fake_match_eye_A.stop_gradient = True
        fake_match_eye_A = fake_match_eye_A.unsqueeze(0)
        fake_match_eye_B = paddle.to_tensor(fake_match_eye_B)
        fake_match_eye_B.stop_gradient = True
        fake_match_eye_B = fake_match_eye_B.unsqueeze(0)
        fake_A_eye_masked = fake_A * mask_A_eye
        fake_B_eye_masked = fake_B * mask_B_eye
        g_A_eye_loss_his = self.criterionL1(fake_A_eye_masked, fake_match_eye_A)
        g_B_eye_loss_his = self.criterionL1(fake_B_eye_masked, fake_match_eye_B)

        self.loss_G_A_his = (g_A_eye_loss_his + g_A_lip_loss_his +
343
                             g_A_skin_loss_his * 0.1) * 0.01
L
lijianshe02 已提交
344
        self.loss_G_B_his = (g_B_eye_loss_his + g_B_lip_loss_his +
345
                             g_B_skin_loss_his * 0.1) * 0.01
L
lijianshe02 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

        #self.loss_G_A_his = self.criterionL1(tmp_1, tmp_2) * 2048 * 255
        #tmp_3 = self.hm_gt_B*self.hm_mask_weight_B
        #tmp_4 = self.fake_B*self.hm_mask_weight_B
        #self.loss_G_B_his = self.criterionL1(tmp_3, tmp_4) * 2048 * 255

        #vgg loss
        vgg_s = self.vgg(self.real_A)
        vgg_s.stop_gradient = True
        vgg_fake_A = self.vgg(self.fake_A)
        self.loss_A_vgg = self.criterionL2(vgg_fake_A,
                                           vgg_s) * lambda_A * lambda_vgg

        vgg_r = self.vgg(self.real_B)
        vgg_r.stop_gradient = True
        vgg_fake_B = self.vgg(self.fake_B)
        self.loss_B_vgg = self.criterionL2(vgg_fake_B,
                                           vgg_r) * lambda_B * lambda_vgg

        self.loss_rec = (self.loss_cycle_A + self.loss_cycle_B +
366 367
                         self.loss_A_vgg + self.loss_B_vgg) * 0.2
        self.loss_idt = (self.loss_idt_A + self.loss_idt_B) * 0.2
L
lijianshe02 已提交
368 369 370 371 372 373 374

        # bg consistency loss
        mask_A_consis = paddle.cast(
            (self.mask_A == 0), dtype='float32') + paddle.cast(
                (self.mask_A == 10), dtype='float32') + paddle.cast(
                    (self.mask_A == 8), dtype='float32')
        mask_A_consis = paddle.unsqueeze(paddle.clip(mask_A_consis, 0, 1), 1)
375 376
        self.loss_G_bg_consis = self.criterionL1(
            self.real_A * mask_A_consis, self.fake_A * mask_A_consis) * 0.1
L
lijianshe02 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

        # combined loss and calculate gradients

        self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_rec + self.loss_idt + self.loss_G_A_his + self.loss_G_B_his + self.loss_G_bg_consis
        self.loss_G.backward()

    def optimize_parameters(self):
        """Calculate losses, gradients, and update network weights; called in every training iteration"""
        # forward
        self.forward()  # compute fake images and reconstruction images.
        # G_A and G_B
        self.set_requires_grad(
            [self.netD_A, self.netD_B],
            False)  # Ds require no gradients when optimizing Gs
        # self.optimizer_G.clear_gradients() #zero_grad()  # set G_A and G_B's gradients to zero
        self.backward_G()  # calculate gradients for G_A and G_B
        self.optimizer_G.minimize(
            self.loss_G)  #step()       # update G_A and G_B's weights
        self.optimizer_G.clear_gradients()
        # self.optimizer_G.clear_gradients()
        # D_A and D_B
        # self.set_requires_grad([self.netD_A, self.netD_B], True)
        self.set_requires_grad(self.netD_A, True)
        # self.optimizer_D.clear_gradients() #zero_grad()   # set D_A and D_B's gradients to zero
        self.backward_D_A()  # calculate gradients for D_A
        self.optimizer_DA.minimize(
            self.loss_D_A)  #step()  # update D_A and D_B's weights
        self.optimizer_DA.clear_gradients()  #zero_g
        self.set_requires_grad(self.netD_B, True)
        # self.optimizer_DB.clear_gradients() #zero_grad()   # set D_A and D_B's gradients to zero

        self.backward_D_B()  # calculate graidents for D_B
        self.optimizer_DB.minimize(
            self.loss_D_B)  #step()  # update D_A and D_B's weights
        self.optimizer_DB.clear_gradients(
        )  #zero_grad()   # set D_A and D_B's gradients to zero