makeup_model.py 18.0 KB
Newer Older
Q
qingqing01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
lijianshe02 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LielinJiang 已提交
14
import numpy as np
L
lijianshe02 已提交
15

L
lijianshe02 已提交
16 17 18
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
L
LielinJiang 已提交
19
from paddle.vision.models import vgg16
20
from paddle.utils.download import get_path_from_url
L
lijianshe02 已提交
21 22 23 24 25 26
from .base_model import BaseModel

from .builder import MODELS
from .generators.builder import build_generator
from .discriminators.builder import build_discriminator
from .losses import GANLoss
L
lijianshe02 已提交
27
from ..modules.init import init_weights
L
lijianshe02 已提交
28 29 30 31 32
from ..solver import build_optimizer
from ..utils.image_pool import ImagePool
from ..utils.preprocess import *
from ..datasets.makeup_dataset import MakeupDataset

33 34
VGGFACE_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/vggface.pdparams'

L
lijianshe02 已提交
35 36 37 38

@MODELS.register()
class MakeupModel(BaseModel):
    """
L
LielinJiang 已提交
39
    PSGAN paper: https://arxiv.org/pdf/1909.06956.pdf
L
lijianshe02 已提交
40
    """
L
LielinJiang 已提交
41 42
    def __init__(self, cfg):
        """Initialize the PSGAN class.
L
lijianshe02 已提交
43 44

        Parameters:
L
LielinJiang 已提交
45
            cfg (dict)-- config of model.
L
lijianshe02 已提交
46
        """
L
LielinJiang 已提交
47
        super(MakeupModel, self).__init__(cfg)
L
lijianshe02 已提交
48 49 50 51

        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
L
LielinJiang 已提交
52 53
        self.nets['netG'] = build_generator(cfg.model.generator)
        init_weights(self.nets['netG'], init_type='xavier', init_gain=1.0)
L
lijianshe02 已提交
54

L
LielinJiang 已提交
55
        if self.is_train:  # define discriminators
56
            vgg = vgg16(pretrained=False)
L
LielinJiang 已提交
57
            self.vgg = vgg.features
58 59 60 61 62
            cur_path = os.path.abspath(os.path.dirname(__file__))
            vgg_weight_path = get_path_from_url(VGGFACE_WEIGHT_URL, cur_path)
            param = paddle.load(vgg_weight_path)
            vgg.load_dict(param)

L
LielinJiang 已提交
63 64 65 66
            self.nets['netD_A'] = build_discriminator(cfg.model.discriminator)
            self.nets['netD_B'] = build_discriminator(cfg.model.discriminator)
            init_weights(self.nets['netD_A'], init_type='xavier', init_gain=1.0)
            init_weights(self.nets['netD_B'], init_type='xavier', init_gain=1.0)
L
lijianshe02 已提交
67 68

            self.fake_A_pool = ImagePool(
L
LielinJiang 已提交
69
                cfg.dataset.train.pool_size
L
lijianshe02 已提交
70 71
            )  # create image buffer to store previously generated images
            self.fake_B_pool = ImagePool(
L
LielinJiang 已提交
72
                cfg.dataset.train.pool_size
L
lijianshe02 已提交
73 74 75
            )  # create image buffer to store previously generated images
            # define loss functions
            self.criterionGAN = GANLoss(
L
LielinJiang 已提交
76
                cfg.model.gan_mode)  #.to(self.device)  # define GAN loss.
L
lijianshe02 已提交
77 78 79 80 81 82
            self.criterionCycle = paddle.nn.L1Loss()
            self.criterionIdt = paddle.nn.L1Loss()
            self.criterionL1 = paddle.nn.L1Loss()
            self.criterionL2 = paddle.nn.MSELoss()

            self.build_lr_scheduler()
L
LielinJiang 已提交
83 84
            self.optimizers['optimizer_G'] = build_optimizer(
                cfg.optimizer,
L
lijianshe02 已提交
85
                self.lr_scheduler,
L
LielinJiang 已提交
86 87 88
                parameter_list=self.nets['netG'].parameters())
            self.optimizers['optimizer_DA'] = build_optimizer(
                cfg.optimizer,
L
lijianshe02 已提交
89
                self.lr_scheduler,
L
LielinJiang 已提交
90 91 92
                parameter_list=self.nets['netD_A'].parameters())
            self.optimizers['optimizer_DB'] = build_optimizer(
                cfg.optimizer,
L
lijianshe02 已提交
93
                self.lr_scheduler,
L
LielinJiang 已提交
94
                parameter_list=self.nets['netD_B'].parameters())
L
lijianshe02 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

        Parameters:
            input (dict): include the data itself and its metadata information.

        The option 'direction' can be used to swap domain A and domain B.
        """
        self.real_A = paddle.to_tensor(input['image_A'])
        self.real_B = paddle.to_tensor(input['image_B'])
        self.c_m = paddle.to_tensor(input['consis_mask'])
        self.P_A = paddle.to_tensor(input['P_A'])
        self.P_B = paddle.to_tensor(input['P_B'])
        self.mask_A_aug = paddle.to_tensor(input['mask_A_aug'])
        self.mask_B_aug = paddle.to_tensor(input['mask_B_aug'])
        self.c_m_t = paddle.transpose(self.c_m, perm=[0, 2, 1])
L
LielinJiang 已提交
112
        if self.is_train:
L
lijianshe02 已提交
113 114 115 116 117 118 119
            self.mask_A = paddle.to_tensor(input['mask_A'])
            self.mask_B = paddle.to_tensor(input['mask_B'])
            self.c_m_idt_a = paddle.to_tensor(input['consis_mask_idt_A'])
            self.c_m_idt_b = paddle.to_tensor(input['consis_mask_idt_B'])

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
L
LielinJiang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        self.fake_A, amm = self.nets['netG'](self.real_A, self.real_B, self.P_A,
                                             self.P_B, self.c_m,
                                             self.mask_A_aug,
                                             self.mask_B_aug)  # G_A(A)
        self.fake_B, _ = self.nets['netG'](self.real_B, self.real_A, self.P_B,
                                           self.P_A, self.c_m_t,
                                           self.mask_A_aug,
                                           self.mask_B_aug)  # G_A(A)
        self.rec_A, _ = self.nets['netG'](self.fake_A, self.real_A, self.P_A,
                                          self.P_A, self.c_m_idt_a,
                                          self.mask_A_aug,
                                          self.mask_B_aug)  # G_A(A)
        self.rec_B, _ = self.nets['netG'](self.fake_B, self.real_B, self.P_B,
                                          self.P_B, self.c_m_idt_b,
                                          self.mask_A_aug,
                                          self.mask_B_aug)  # G_A(A)

        # visual
        self.visual_items['real_A'] = self.real_A
        self.visual_items['fake_B'] = self.fake_B
        self.visual_items['rec_A'] = self.rec_A
        self.visual_items['real_B'] = self.real_B
        self.visual_items['fake_A'] = self.fake_A
        self.visual_items['rec_B'] = self.rec_B
L
lijianshe02 已提交
144 145 146 147 148

    def forward_test(self, input):
        '''
        not implement now
        '''
L
LielinJiang 已提交
149 150 151 152
        return self.nets['netG'](input['image_A'], input['image_B'],
                                 input['P_A'], input['P_B'],
                                 input['consis_mask'], input['mask_A_aug'],
                                 input['mask_B_aug'])
L
lijianshe02 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

    def test(self, input):
        """Forward function used in test time.

        This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
        It also calls <compute_visuals> to produce additional visualization results
        """
        with paddle.no_grad():
            return self.forward_test(input)

    def backward_D_basic(self, netD, real, fake):
        """Calculate GAN loss for the discriminator

        Parameters:
            netD (network)      -- the discriminator D
            real (tensor array) -- real images
            fake (tensor array) -- images generated by a generator

        Return the discriminator loss.
        We also call loss_D.backward() to calculate the gradients.
        """
        # Real
        pred_real = netD(real)
        loss_D_real = self.criterionGAN(pred_real, True)
        # Fake
        pred_fake = netD(fake.detach())
        loss_D_fake = self.criterionGAN(pred_fake, False)
        # Combined loss and calculate gradients
        loss_D = (loss_D_real + loss_D_fake) * 0.5
        loss_D.backward()
        return loss_D

    def backward_D_A(self):
        """Calculate GAN loss for discriminator D_A"""
        fake_B = self.fake_B_pool.query(self.fake_B)
L
LielinJiang 已提交
188 189
        self.loss_D_A = self.backward_D_basic(self.nets['netD_A'], self.real_B,
                                              fake_B)
L
lijianshe02 已提交
190
        self.losses['D_A_loss'] = self.loss_D_A
L
lijianshe02 已提交
191 192 193 194

    def backward_D_B(self):
        """Calculate GAN loss for discriminator D_B"""
        fake_A = self.fake_A_pool.query(self.fake_A)
L
LielinJiang 已提交
195 196
        self.loss_D_B = self.backward_D_basic(self.nets['netD_B'], self.real_A,
                                              fake_A)
L
lijianshe02 已提交
197
        self.losses['D_B_loss'] = self.loss_D_B
L
lijianshe02 已提交
198 199 200

    def backward_G(self):
        """Calculate the loss for generators G_A and G_B"""
L
LielinJiang 已提交
201 202 203 204

        lambda_idt = self.cfg.lambda_identity
        lambda_A = self.cfg.lambda_A
        lambda_B = self.cfg.lambda_B
L
lijianshe02 已提交
205 206 207
        lambda_vgg = 5e-3
        # Identity loss
        if lambda_idt > 0:
L
LielinJiang 已提交
208 209 210 211
            self.idt_A, _ = self.nets['netG'](self.real_A, self.real_A,
                                              self.P_A, self.P_A,
                                              self.c_m_idt_a, self.mask_A_aug,
                                              self.mask_B_aug)  # G_A(A)
L
lijianshe02 已提交
212 213
            self.loss_idt_A = self.criterionIdt(
                self.idt_A, self.real_A) * lambda_A * lambda_idt
L
LielinJiang 已提交
214 215 216 217
            self.idt_B, _ = self.nets['netG'](self.real_B, self.real_B,
                                              self.P_B, self.P_B,
                                              self.c_m_idt_b, self.mask_A_aug,
                                              self.mask_B_aug)  # G_A(A)
L
lijianshe02 已提交
218 219
            self.loss_idt_B = self.criterionIdt(
                self.idt_B, self.real_B) * lambda_B * lambda_idt
L
LielinJiang 已提交
220 221 222 223

            # visual
            self.visual_items['idt_A'] = self.idt_A
            self.visual_items['idt_B'] = self.idt_B
L
lijianshe02 已提交
224 225 226 227 228
        else:
            self.loss_idt_A = 0
            self.loss_idt_B = 0

        # GAN loss D_A(G_A(A))
L
LielinJiang 已提交
229 230
        self.loss_G_A = self.criterionGAN(self.nets['netD_A'](self.fake_A),
                                          True)
L
lijianshe02 已提交
231
        # GAN loss D_B(G_B(B))
L
LielinJiang 已提交
232 233
        self.loss_G_B = self.criterionGAN(self.nets['netD_B'](self.fake_B),
                                          True)
L
lijianshe02 已提交
234 235 236 237 238 239 240
        # Forward cycle loss || G_B(G_A(A)) - A||
        self.loss_cycle_A = self.criterionCycle(self.rec_A,
                                                self.real_A) * lambda_A
        # Backward cycle loss || G_A(G_B(B)) - B||
        self.loss_cycle_B = self.criterionCycle(self.rec_B,
                                                self.real_B) * lambda_B

L
lijianshe02 已提交
241 242
        self.losses['G_A_adv_loss'] = self.loss_G_A
        self.losses['G_B_adv_loss'] = self.loss_G_B
243

L
lijianshe02 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        mask_A_lip = self.mask_A_aug[:, 0].unsqueeze(1)
        mask_B_lip = self.mask_B_aug[:, 0].unsqueeze(1)

        mask_A_lip_np = mask_A_lip.numpy().squeeze()
        mask_B_lip_np = mask_B_lip.numpy().squeeze()
        mask_A_lip_np, mask_B_lip_np, index_A_lip, index_B_lip = mask_preprocess(
            mask_A_lip_np, mask_B_lip_np)
        real_A = paddle.nn.clip((self.real_A + 1.0) / 2.0, 0.0, 1.0) * 255.0
        real_A_np = real_A.numpy().squeeze()
        real_B = paddle.nn.clip((self.real_B + 1.0) / 2.0, 0.0, 1.0) * 255.0
        real_B_np = real_B.numpy().squeeze()
        fake_A = paddle.nn.clip((self.fake_A + 1.0) / 2.0, 0.0, 1.0) * 255.0
        fake_A_np = fake_A.numpy().squeeze()
        fake_B = paddle.nn.clip((self.fake_B + 1.0) / 2.0, 0.0, 1.0) * 255.0
        fake_B_np = fake_B.numpy().squeeze()

        fake_match_lip_A = hisMatch(fake_A_np, real_B_np, mask_A_lip_np,
                                    mask_B_lip_np, index_A_lip)
        fake_match_lip_B = hisMatch(fake_B_np, real_A_np, mask_B_lip_np,
                                    mask_A_lip_np, index_B_lip)
        fake_match_lip_A = paddle.to_tensor(fake_match_lip_A)
        fake_match_lip_A.stop_gradient = True
        fake_match_lip_A = fake_match_lip_A.unsqueeze(0)
        fake_match_lip_B = paddle.to_tensor(fake_match_lip_B)
        fake_match_lip_B.stop_gradient = True
        fake_match_lip_B = fake_match_lip_B.unsqueeze(0)
        fake_A_lip_masked = fake_A * mask_A_lip
        fake_B_lip_masked = fake_B * mask_B_lip
        g_A_lip_loss_his = self.criterionL1(fake_A_lip_masked, fake_match_lip_A)
        g_B_lip_loss_his = self.criterionL1(fake_B_lip_masked, fake_match_lip_B)

        #skin
        mask_A_skin = self.mask_A_aug[:, 1].unsqueeze(1)
        mask_B_skin = self.mask_B_aug[:, 1].unsqueeze(1)

        mask_A_skin_np = mask_A_skin.numpy().squeeze()
        mask_B_skin_np = mask_B_skin.numpy().squeeze()
        mask_A_skin_np, mask_B_skin_np, index_A_skin, index_B_skin = mask_preprocess(
            mask_A_skin_np, mask_B_skin_np)

        fake_match_skin_A = hisMatch(fake_A_np, real_B_np, mask_A_skin_np,
                                     mask_B_skin_np, index_A_skin)
        fake_match_skin_B = hisMatch(fake_B_np, real_A_np, mask_B_skin_np,
                                     mask_A_skin_np, index_B_skin)
        fake_match_skin_A = paddle.to_tensor(fake_match_skin_A)
        fake_match_skin_A.stop_gradient = True
        fake_match_skin_A = fake_match_skin_A.unsqueeze(0)
        fake_match_skin_B = paddle.to_tensor(fake_match_skin_B)
        fake_match_skin_B.stop_gradient = True
        fake_match_skin_B = fake_match_skin_B.unsqueeze(0)
        fake_A_skin_masked = fake_A * mask_A_skin
        fake_B_skin_masked = fake_B * mask_B_skin
        g_A_skin_loss_his = self.criterionL1(fake_A_skin_masked,
                                             fake_match_skin_A)
        g_B_skin_loss_his = self.criterionL1(fake_B_skin_masked,
                                             fake_match_skin_B)

        #eye
        mask_A_eye = self.mask_A_aug[:, 2].unsqueeze(1)
        mask_B_eye = self.mask_B_aug[:, 2].unsqueeze(1)

        mask_A_eye_np = mask_A_eye.numpy().squeeze()
        mask_B_eye_np = mask_B_eye.numpy().squeeze()
        mask_A_eye_np, mask_B_eye_np, index_A_eye, index_B_eye = mask_preprocess(
            mask_A_eye_np, mask_B_eye_np)

        fake_match_eye_A = hisMatch(fake_A_np, real_B_np, mask_A_eye_np,
                                    mask_B_eye_np, index_A_eye)
        fake_match_eye_B = hisMatch(fake_B_np, real_A_np, mask_B_eye_np,
                                    mask_A_eye_np, index_B_eye)
        fake_match_eye_A = paddle.to_tensor(fake_match_eye_A)
        fake_match_eye_A.stop_gradient = True
        fake_match_eye_A = fake_match_eye_A.unsqueeze(0)
        fake_match_eye_B = paddle.to_tensor(fake_match_eye_B)
        fake_match_eye_B.stop_gradient = True
        fake_match_eye_B = fake_match_eye_B.unsqueeze(0)
        fake_A_eye_masked = fake_A * mask_A_eye
        fake_B_eye_masked = fake_B * mask_B_eye
        g_A_eye_loss_his = self.criterionL1(fake_A_eye_masked, fake_match_eye_A)
        g_B_eye_loss_his = self.criterionL1(fake_B_eye_masked, fake_match_eye_B)

        self.loss_G_A_his = (g_A_eye_loss_his + g_A_lip_loss_his +
L
lijianshe02 已提交
326
                             g_A_skin_loss_his * 0.1) * 0.1
L
lijianshe02 已提交
327
        self.loss_G_B_his = (g_B_eye_loss_his + g_B_lip_loss_his +
L
lijianshe02 已提交
328
                             g_B_skin_loss_his * 0.1) * 0.1
L
lijianshe02 已提交
329

L
lijianshe02 已提交
330 331
        self.losses['G_A_his_loss'] = self.loss_G_A_his
        self.losses['G_B_his_loss'] = self.loss_G_A_his
L
lijianshe02 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345

        #vgg loss
        vgg_s = self.vgg(self.real_A)
        vgg_s.stop_gradient = True
        vgg_fake_A = self.vgg(self.fake_A)
        self.loss_A_vgg = self.criterionL2(vgg_fake_A,
                                           vgg_s) * lambda_A * lambda_vgg

        vgg_r = self.vgg(self.real_B)
        vgg_r.stop_gradient = True
        vgg_fake_B = self.vgg(self.fake_B)
        self.loss_B_vgg = self.criterionL2(vgg_fake_B,
                                           vgg_r) * lambda_B * lambda_vgg

L
lijianshe02 已提交
346 347 348
        self.loss_rec = (self.loss_cycle_A * 0.2 + self.loss_cycle_B * 0.2 +
                         self.loss_A_vgg + self.loss_B_vgg) * 0.5
        self.loss_idt = (self.loss_idt_A + self.loss_idt_B) * 0.1
L
lijianshe02 已提交
349

L
lijianshe02 已提交
350 351 352 353
        self.losses['G_A_vgg_loss'] = self.loss_A_vgg
        self.losses['G_B_vgg_loss'] = self.loss_B_vgg
        self.losses['G_rec_loss'] = self.loss_rec
        self.losses['G_idt_loss'] = self.loss_idt
354

L
lijianshe02 已提交
355 356 357 358 359 360
        # bg consistency loss
        mask_A_consis = paddle.cast(
            (self.mask_A == 0), dtype='float32') + paddle.cast(
                (self.mask_A == 10), dtype='float32') + paddle.cast(
                    (self.mask_A == 8), dtype='float32')
        mask_A_consis = paddle.unsqueeze(paddle.clip(mask_A_consis, 0, 1), 1)
361 362
        self.loss_G_bg_consis = self.criterionL1(
            self.real_A * mask_A_consis, self.fake_A * mask_A_consis) * 0.1
L
lijianshe02 已提交
363 364 365 366 367 368 369 370 371 372 373 374

        # combined loss and calculate gradients

        self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_rec + self.loss_idt + self.loss_G_A_his + self.loss_G_B_his + self.loss_G_bg_consis
        self.loss_G.backward()

    def optimize_parameters(self):
        """Calculate losses, gradients, and update network weights; called in every training iteration"""
        # forward
        self.forward()  # compute fake images and reconstruction images.
        # G_A and G_B
        self.set_requires_grad(
L
LielinJiang 已提交
375
            [self.nets['netD_A'], self.nets['netD_B']],
L
lijianshe02 已提交
376 377 378
            False)  # Ds require no gradients when optimizing Gs
        # self.optimizer_G.clear_gradients() #zero_grad()  # set G_A and G_B's gradients to zero
        self.backward_G()  # calculate gradients for G_A and G_B
L
LielinJiang 已提交
379
        self.optimizers['optimizer_G'].minimize(
L
lijianshe02 已提交
380
            self.loss_G)  #step()       # update G_A and G_B's weights
L
LielinJiang 已提交
381
        self.optimizers['optimizer_G'].clear_gradients()
L
lijianshe02 已提交
382
        # D_A and D_B
L
LielinJiang 已提交
383
        self.set_requires_grad(self.nets['netD_A'], True)
L
lijianshe02 已提交
384 385
        # self.optimizer_D.clear_gradients() #zero_grad()   # set D_A and D_B's gradients to zero
        self.backward_D_A()  # calculate gradients for D_A
L
LielinJiang 已提交
386
        self.optimizers['optimizer_DA'].minimize(
L
lijianshe02 已提交
387
            self.loss_D_A)  #step()  # update D_A and D_B's weights
L
LielinJiang 已提交
388 389
        self.optimizers['optimizer_DA'].clear_gradients()  #zero_g
        self.set_requires_grad(self.nets['netD_B'], True)
L
lijianshe02 已提交
390 391

        self.backward_D_B()  # calculate graidents for D_B
L
LielinJiang 已提交
392
        self.optimizers['optimizer_DB'].minimize(
L
lijianshe02 已提交
393
            self.loss_D_B)  #step()  # update D_A and D_B's weights
L
LielinJiang 已提交
394
        self.optimizers['optimizer_DB'].clear_gradients(
L
lijianshe02 已提交
395
        )  #zero_grad()   # set D_A and D_B's gradients to zero