trainer.py 14.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16
import os
import time
L
LielinJiang 已提交
17
import copy
L
LielinJiang 已提交
18

L
LielinJiang 已提交
19
import logging
L
LielinJiang 已提交
20
import datetime
L
LielinJiang 已提交
21

L
LielinJiang 已提交
22
import paddle
L
LielinJiang 已提交
23
from paddle.distributed import ParallelEnv
L
LielinJiang 已提交
24 25 26 27

from ..datasets.builder import build_dataloader
from ..models.builder import build_model
from ..utils.visual import tensor2img, save_image
L
LielinJiang 已提交
28
from ..utils.filesystem import makedirs, save, load
29
from ..utils.timer import TimeAverager
L
LielinJiang 已提交
30

L
fix nan  
LielinJiang 已提交
31

32 33 34 35 36
class IterLoader:
    def __init__(self, dataloader):
        self._dataloader = dataloader
        self.iter_loader = iter(self._dataloader)
        self._epoch = 1
L
LielinJiang 已提交
37

38 39 40 41 42 43 44 45 46 47 48
    @property
    def epoch(self):
        return self._epoch

    def __next__(self):
        try:
            data = next(self.iter_loader)
        except StopIteration:
            self._epoch += 1
            self.iter_loader = iter(self._dataloader)
            data = next(self.iter_loader)
L
LielinJiang 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        return data

    def __len__(self):
        return len(self._dataloader)


class Trainer:
    """
    # trainer calling logic:
    #
    #                build_model                               ||    model(BaseModel)
    #                     |                                    ||
    #               build_dataloader                           ||    dataloader
    #                     |                                    ||
    #               model.setup_lr_schedulers                  ||    lr_scheduler
    #                     |                                    ||
    #               model.setup_optimizers                     ||    optimizers
    #                     |                                    ||
    #     train loop (model.setup_input + model.train_iter)    ||    train loop
    #                     |                                    ||
    #         print log (model.get_current_losses)             ||
    #                     |                                    ||
    #         save checkpoint (model.nets)                     \/
    """
    def __init__(self, cfg):
L
LielinJiang 已提交
75

L
LielinJiang 已提交
76
        # build model
77
        self.model = build_model(cfg.model)
78 79 80
        # multiple gpus prepare
        if ParallelEnv().nranks > 1:
            self.distributed_data_parallel()
L
LielinJiang 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        # build train dataloader
        self.train_dataloader = build_dataloader(cfg.dataset.train)
        self.iters_per_epoch = len(self.train_dataloader)

        # build lr scheduler
        # TODO: has a better way?
        if 'lr_scheduler' in cfg and 'iters_per_epoch' in cfg.lr_scheduler:
            cfg.lr_scheduler.iters_per_epoch = self.iters_per_epoch
        self.lr_schedulers = self.model.setup_lr_schedulers(cfg.lr_scheduler)

        # build optimizers
        self.optimizers = self.model.setup_optimizers(self.lr_schedulers,
                                                      cfg.optimizer)

        # build metrics
        self.metrics = None
        validate_cfg = cfg.get('validate', None)
        if validate_cfg and 'metrics' in validate_cfg:
            self.metrics = self.model.setup_metrics(validate_cfg['metrics'])

L
LielinJiang 已提交
102
        self.logger = logging.getLogger(__name__)
郑启航 已提交
103 104 105 106
        self.enable_visualdl = cfg.get('enable_visualdl', False)
        if self.enable_visualdl:
            import visualdl
            self.vdl_logger = visualdl.LogWriter(logdir=cfg.output_dir)
107

L
LielinJiang 已提交
108 109
        # base config
        self.output_dir = cfg.output_dir
110 111 112 113 114 115 116 117
        self.epochs = cfg.get('epochs', None)
        if self.epochs:
            self.total_iters = self.epochs * self.iters_per_epoch
            self.by_epoch = True
        else:
            self.by_epoch = False
            self.total_iters = cfg.total_iters

L
LielinJiang 已提交
118 119
        self.start_epoch = 1
        self.current_epoch = 1
120 121
        self.current_iter = 1
        self.inner_iter = 1
L
LielinJiang 已提交
122
        self.batch_id = 0
郑启航 已提交
123
        self.global_steps = 0
L
LielinJiang 已提交
124 125 126
        self.weight_interval = cfg.snapshot_config.interval
        self.log_interval = cfg.log_config.interval
        self.visual_interval = cfg.log_config.visiual_interval
L
LielinJiang 已提交
127 128 129
        if self.by_epoch:
            self.weight_interval *= self.iters_per_epoch

L
LielinJiang 已提交
130 131 132
        self.validate_interval = -1
        if cfg.get('validate', None) is not None:
            self.validate_interval = cfg.validate.get('interval', -1)
L
LielinJiang 已提交
133 134 135
        self.cfg = cfg

        self.local_rank = ParallelEnv().local_rank
136 137

        self.time_count = {}
L
LielinJiang 已提交
138 139
        self.best_metric = {}

140
    def distributed_data_parallel(self):
L
LielinJiang 已提交
141
        strategy = paddle.distributed.prepare_context()
142 143
        for net_name, net in self.model.nets.items():
            self.model.nets[net_name] = paddle.DataParallel(net, strategy)
144

L
LielinJiang 已提交
145
    def train(self):
146 147
        reader_cost_averager = TimeAverager()
        batch_cost_averager = TimeAverager()
L
LielinJiang 已提交
148

149
        iter_loader = IterLoader(self.train_dataloader)
L
LielinJiang 已提交
150

151 152 153
        while self.current_iter < (self.total_iters + 1):
            self.current_epoch = iter_loader.epoch
            self.inner_iter = self.current_iter % self.iters_per_epoch
L
LielinJiang 已提交
154

155 156 157 158 159 160 161 162 163 164 165
            start_time = step_start_time = time.time()
            data = next(iter_loader)
            reader_cost_averager.record(time.time() - step_start_time)
            # unpack data from dataset and apply preprocessing
            # data input should be dict
            self.model.setup_input(data)
            self.model.train_iter(self.optimizers)

            batch_cost_averager.record(time.time() - step_start_time,
                                       num_samples=self.cfg.get(
                                           'batch_size', 1))
166 167 168

            step_start_time = time.time()

169 170 171 172 173 174 175 176 177 178 179 180 181
            if self.current_iter % self.log_interval == 0:
                self.data_time = reader_cost_averager.get_average()
                self.step_time = batch_cost_averager.get_average()
                self.ips = batch_cost_averager.get_ips_average()
                self.print_log()

                reader_cost_averager.reset()
                batch_cost_averager.reset()

            if self.current_iter % self.visual_interval == 0:
                self.visual('visual_train')

            self.model.lr_scheduler.step()
L
LielinJiang 已提交
182

L
LielinJiang 已提交
183
            if self.validate_interval > -1 and self.current_iter % self.validate_interval == 0:
184
                self.test()
L
fix nan  
LielinJiang 已提交
185

L
LielinJiang 已提交
186 187 188
            if self.current_iter % self.weight_interval == 0:
                self.save(self.current_iter, 'weight', keep=-1)
                self.save(self.current_iter)
L
LielinJiang 已提交
189

190
            self.current_iter += 1
L
LielinJiang 已提交
191

L
LielinJiang 已提交
192 193
    def test(self):
        if not hasattr(self, 'test_dataloader'):
194
            self.test_dataloader = build_dataloader(self.cfg.dataset.test,
195 196 197 198 199 200
                                                    is_train=False,
                                                    distributed=False)

        if self.metrics:
            for metric in self.metrics.values():
                metric.reset()
L
LielinJiang 已提交
201 202 203 204

        # data[0]: img, data[1]: img path index
        # test batch size must be 1
        for i, data in enumerate(self.test_dataloader):
L
LielinJiang 已提交
205

206 207
            self.model.setup_input(data)
            self.model.test_iter(metrics=self.metrics)
L
LielinJiang 已提交
208 209

            visual_results = {}
L
LielinJiang 已提交
210 211 212
            current_paths = self.model.get_image_paths()
            current_visuals = self.model.get_current_visuals()

L
LielinJiang 已提交
213 214 215 216 217 218 219 220 221 222 223 224
            if len(current_visuals) > 0 and list(
                    current_visuals.values())[0].shape == 4:
                num_samples = list(current_visuals.values())[0].shape[0]
            else:
                num_samples = 1

            for j in range(num_samples):
                if j < len(current_paths):
                    short_path = os.path.basename(current_paths[j])
                    basename = os.path.splitext(short_path)[0]
                else:
                    basename = '{:04d}_{:04d}'.format(i, j)
L
LielinJiang 已提交
225 226
                for k, img_tensor in current_visuals.items():
                    name = '%s_%s' % (basename, k)
L
LielinJiang 已提交
227 228 229 230
                    if len(img_tensor.shape) == 4:
                        visual_results.update({name: img_tensor[j]})
                    else:
                        visual_results.update({name: img_tensor})
L
LielinJiang 已提交
231

郑启航 已提交
232 233 234 235
            self.visual('visual_test',
                        visual_results=visual_results,
                        step=self.batch_id,
                        is_save_image=True)
L
LielinJiang 已提交
236

L
LielinJiang 已提交
237
            if i % self.log_interval == 0:
238 239
                self.logger.info('Test iter: [%d/%d]' %
                                 (i, len(self.test_dataloader)))
L
LielinJiang 已提交
240

241 242 243 244 245
        if self.metrics:
            for metric_name, metric in self.metrics.items():
                self.logger.info("Metric {}: {:.4f}".format(
                    metric_name, metric.accumulate()))

L
LielinJiang 已提交
246 247
    def print_log(self):
        losses = self.model.get_current_losses()
L
LielinJiang 已提交
248

249 250 251 252 253 254 255 256 257
        message = ''
        if self.by_epoch:
            message += 'Epoch: %d/%d, iter: %d/%d ' % (
                self.current_epoch, self.epochs, self.inner_iter,
                self.iters_per_epoch)
        else:
            message += 'Iter: %d/%d ' % (self.current_iter, self.total_iters)

        message += f'lr: {self.current_learning_rate:.3e} '
L
LielinJiang 已提交
258 259 260

        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)
郑启航 已提交
261 262
            if self.enable_visualdl:
                self.vdl_logger.add_scalar(k, v, step=self.global_steps)
L
LielinJiang 已提交
263

264 265 266
        if hasattr(self, 'step_time'):
            message += 'batch_cost: %.5f sec ' % self.step_time

267
        if hasattr(self, 'data_time'):
268
            message += 'reader_cost: %.5f sec ' % self.data_time
269

270
        if hasattr(self, 'ips'):
L
LielinJiang 已提交
271 272 273
            message += 'ips: %.5f images/s ' % self.ips

        if hasattr(self, 'step_time'):
274
            eta = self.step_time * (self.total_iters - self.current_iter - 1)
L
LielinJiang 已提交
275 276
            eta_str = str(datetime.timedelta(seconds=int(eta)))
            message += f'eta: {eta_str}'
277

L
LielinJiang 已提交
278 279 280 281 282
        # print the message
        self.logger.info(message)

    @property
    def current_learning_rate(self):
L
LielinJiang 已提交
283 284
        for optimizer in self.model.optimizers.values():
            return optimizer.get_lr()
L
LielinJiang 已提交
285

郑启航 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299
    def visual(self,
               results_dir,
               visual_results=None,
               step=None,
               is_save_image=False):
        """
        visual the images, use visualdl or directly write to the directory

        Parameters:
            results_dir (str)     --  directory name which contains saved images
            visual_results (dict) --  the results images dict
            step (int)            --  global steps, used in visualdl
            is_save_image (bool)  --  weather write to the directory or visualdl
        """
L
LielinJiang 已提交
300 301 302 303 304
        self.model.compute_visuals()

        if visual_results is None:
            visual_results = self.model.get_current_visuals()

L
LielinJiang 已提交
305 306 307
        min_max = self.cfg.get('min_max', None)
        if min_max is None:
            min_max = (-1., 1.)
308

郑启航 已提交
309 310 311
        image_num = self.cfg.get('image_num', None)
        if (image_num is None) or (not self.enable_visualdl):
            image_num = 1
L
LielinJiang 已提交
312
        for label, image in visual_results.items():
郑启航 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
            image_numpy = tensor2img(image, min_max, image_num)
            if (not is_save_image) and self.enable_visualdl:
                self.vdl_logger.add_image(
                    results_dir + '/' + label,
                    image_numpy,
                    step=step if step else self.global_steps,
                    dataformats="HWC" if image_num == 1 else "NCHW")
            else:
                if self.cfg.is_train:
                    msg = 'epoch%.3d_' % self.current_epoch
                else:
                    msg = ''
                makedirs(os.path.join(self.output_dir, results_dir))
                img_path = os.path.join(self.output_dir, results_dir,
                                        msg + '%s.png' % (label))
                save_image(image_numpy, img_path)
L
LielinJiang 已提交
329 330 331 332

    def save(self, epoch, name='checkpoint', keep=1):
        if self.local_rank != 0:
            return
L
LielinJiang 已提交
333

L
LielinJiang 已提交
334 335 336
        assert name in ['checkpoint', 'weight']

        state_dicts = {}
L
LielinJiang 已提交
337 338 339 340 341 342
        if self.by_epoch:
            save_filename = 'epoch_%s_%s.pdparams' % (
                epoch // self.iters_per_epoch, name)
        else:
            save_filename = 'iter_%s_%s.pdparams' % (epoch, name)

L
LielinJiang 已提交
343
        save_path = os.path.join(self.output_dir, save_filename)
L
LielinJiang 已提交
344 345
        for net_name, net in self.model.nets.items():
            state_dicts[net_name] = net.state_dict()
L
LielinJiang 已提交
346 347 348 349 350 351 352

        if name == 'weight':
            save(state_dicts, save_path)
            return

        state_dicts['epoch'] = epoch

L
LielinJiang 已提交
353 354
        for opt_name, opt in self.model.optimizers.items():
            state_dicts[opt_name] = opt.state_dict()
L
LielinJiang 已提交
355 356 357 358 359

        save(state_dicts, save_path)

        if keep > 0:
            try:
L
LielinJiang 已提交
360 361 362 363 364 365 366 367 368 369
                if self.by_epoch:
                    checkpoint_name_to_be_removed = os.path.join(
                        self.output_dir, 'epoch_%s_%s.pdparams' %
                        ((epoch - keep * self.weight_interval) //
                         self.iters_per_epoch, name))
                else:
                    checkpoint_name_to_be_removed = os.path.join(
                        self.output_dir, 'iter_%s_%s.pdparams' %
                        (epoch - keep * self.weight_interval, name))

L
LielinJiang 已提交
370 371 372 373 374 375 376 377 378 379
                if os.path.exists(checkpoint_name_to_be_removed):
                    os.remove(checkpoint_name_to_be_removed)

            except Exception as e:
                self.logger.info('remove old checkpoints error: {}'.format(e))

    def resume(self, checkpoint_path):
        state_dicts = load(checkpoint_path)
        if state_dicts.get('epoch', None) is not None:
            self.start_epoch = state_dicts['epoch'] + 1
L
LielinJiang 已提交
380
            self.global_steps = self.iters_per_epoch * state_dicts['epoch']
L
LielinJiang 已提交
381

L
LielinJiang 已提交
382
        for net_name, net in self.model.nets.items():
383
            net.set_state_dict(state_dicts[net_name])
L
LielinJiang 已提交
384

L
LielinJiang 已提交
385
        for opt_name, opt in self.model.optimizers.items():
386
            opt.set_state_dict(state_dicts[opt_name])
L
LielinJiang 已提交
387 388 389

    def load(self, weight_path):
        state_dicts = load(weight_path)
L
LielinJiang 已提交
390

L
LielinJiang 已提交
391
        for net_name, net in self.model.nets.items():
392 393 394 395 396 397 398 399
            if net_name in state_dicts:
                net.set_state_dict(state_dicts[net_name])
                self.logger.info(
                    'Loaded pretrained weight for net {}'.format(net_name))
            else:
                self.logger.warning(
                    'Can not find state dict of net {}. Skip load pretrained weight for net {}'
                    .format(net_name, net_name))
郑启航 已提交
400 401 402 403 404 405 406 407

    def close(self):
        """
        when finish the training need close file handler or other.

        """
        if self.enable_visualdl:
            self.vdl_logger.close()