trainer.py 15.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16
import os
import time
L
LielinJiang 已提交
17
import copy
L
LielinJiang 已提交
18

L
LielinJiang 已提交
19
import logging
L
LielinJiang 已提交
20
import datetime
L
LielinJiang 已提交
21

L
LielinJiang 已提交
22
import paddle
L
LielinJiang 已提交
23
from paddle.distributed import ParallelEnv
L
LielinJiang 已提交
24 25 26 27

from ..datasets.builder import build_dataloader
from ..models.builder import build_model
from ..utils.visual import tensor2img, save_image
L
LielinJiang 已提交
28
from ..utils.filesystem import makedirs, save, load
29
from ..utils.timer import TimeAverager
L
LielinJiang 已提交
30

L
fix nan  
LielinJiang 已提交
31

32 33 34 35 36
class IterLoader:
    def __init__(self, dataloader):
        self._dataloader = dataloader
        self.iter_loader = iter(self._dataloader)
        self._epoch = 1
L
LielinJiang 已提交
37

38 39 40 41 42 43 44 45 46 47 48
    @property
    def epoch(self):
        return self._epoch

    def __next__(self):
        try:
            data = next(self.iter_loader)
        except StopIteration:
            self._epoch += 1
            self.iter_loader = iter(self._dataloader)
            data = next(self.iter_loader)
L
LielinJiang 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        return data

    def __len__(self):
        return len(self._dataloader)


class Trainer:
    """
    # trainer calling logic:
    #
    #                build_model                               ||    model(BaseModel)
    #                     |                                    ||
    #               build_dataloader                           ||    dataloader
    #                     |                                    ||
    #               model.setup_lr_schedulers                  ||    lr_scheduler
    #                     |                                    ||
    #               model.setup_optimizers                     ||    optimizers
    #                     |                                    ||
    #     train loop (model.setup_input + model.train_iter)    ||    train loop
    #                     |                                    ||
    #         print log (model.get_current_losses)             ||
    #                     |                                    ||
    #         save checkpoint (model.nets)                     \/
    """
    def __init__(self, cfg):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        # base config
        self.logger = logging.getLogger(__name__)
        self.cfg = cfg
        self.output_dir = cfg.output_dir
        self.max_eval_steps = cfg.model.get('max_eval_steps', None)

        self.local_rank = ParallelEnv().local_rank
        self.log_interval = cfg.log_config.interval
        self.visual_interval = cfg.log_config.visiual_interval
        self.weight_interval = cfg.snapshot_config.interval

        self.start_epoch = 1
        self.current_epoch = 1
        self.current_iter = 1
        self.inner_iter = 1
        self.batch_id = 0
        self.global_steps = 0
L
LielinJiang 已提交
92

L
LielinJiang 已提交
93
        # build model
94
        self.model = build_model(cfg.model)
95 96 97
        # multiple gpus prepare
        if ParallelEnv().nranks > 1:
            self.distributed_data_parallel()
L
LielinJiang 已提交
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        # build metrics
        self.metrics = None
        validate_cfg = cfg.get('validate', None)
        if validate_cfg and 'metrics' in validate_cfg:
            self.metrics = self.model.setup_metrics(validate_cfg['metrics'])

        self.enable_visualdl = cfg.get('enable_visualdl', False)
        if self.enable_visualdl:
            import visualdl
            self.vdl_logger = visualdl.LogWriter(logdir=cfg.output_dir)

        # evaluate only
        if not cfg.is_train:
            return

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        # build train dataloader
        self.train_dataloader = build_dataloader(cfg.dataset.train)
        self.iters_per_epoch = len(self.train_dataloader)

        # build lr scheduler
        # TODO: has a better way?
        if 'lr_scheduler' in cfg and 'iters_per_epoch' in cfg.lr_scheduler:
            cfg.lr_scheduler.iters_per_epoch = self.iters_per_epoch
        self.lr_schedulers = self.model.setup_lr_schedulers(cfg.lr_scheduler)

        # build optimizers
        self.optimizers = self.model.setup_optimizers(self.lr_schedulers,
                                                      cfg.optimizer)

        self.epochs = cfg.get('epochs', None)
        if self.epochs:
            self.total_iters = self.epochs * self.iters_per_epoch
            self.by_epoch = True
        else:
            self.by_epoch = False
            self.total_iters = cfg.total_iters

L
LielinJiang 已提交
136 137 138
        if self.by_epoch:
            self.weight_interval *= self.iters_per_epoch

L
LielinJiang 已提交
139 140 141
        self.validate_interval = -1
        if cfg.get('validate', None) is not None:
            self.validate_interval = cfg.validate.get('interval', -1)
142 143

        self.time_count = {}
L
LielinJiang 已提交
144 145
        self.best_metric = {}

146
    def distributed_data_parallel(self):
L
LielinJiang 已提交
147
        paddle.distributed.init_parallel_env()
148
        for net_name, net in self.model.nets.items():
L
LielinJiang 已提交
149
            self.model.nets[net_name] = paddle.DataParallel(net)
150

L
LielinJiang 已提交
151 152 153 154 155 156 157 158 159 160 161
    def learning_rate_scheduler_step(self):
        if isinstance(self.model.lr_scheduler, dict):
            for lr_scheduler in self.model.lr_scheduler.values():
                lr_scheduler.step()
        elif isinstance(self.model.lr_scheduler,
                        paddle.optimizer.lr.LRScheduler):
            self.model.lr_scheduler.step()
        else:
            raise ValueError(
                'lr schedulter must be a dict or an instance of LRScheduler')

L
LielinJiang 已提交
162
    def train(self):
163 164
        reader_cost_averager = TimeAverager()
        batch_cost_averager = TimeAverager()
L
LielinJiang 已提交
165

166
        iter_loader = IterLoader(self.train_dataloader)
L
LielinJiang 已提交
167

L
LielinJiang 已提交
168 169
        # set model.is_train = True
        self.model.setup_train_mode(is_train=True)
170 171 172
        while self.current_iter < (self.total_iters + 1):
            self.current_epoch = iter_loader.epoch
            self.inner_iter = self.current_iter % self.iters_per_epoch
L
LielinJiang 已提交
173

174 175 176 177 178 179 180 181 182 183 184
            start_time = step_start_time = time.time()
            data = next(iter_loader)
            reader_cost_averager.record(time.time() - step_start_time)
            # unpack data from dataset and apply preprocessing
            # data input should be dict
            self.model.setup_input(data)
            self.model.train_iter(self.optimizers)

            batch_cost_averager.record(time.time() - step_start_time,
                                       num_samples=self.cfg.get(
                                           'batch_size', 1))
185 186 187

            step_start_time = time.time()

188 189 190 191 192 193 194 195 196 197 198 199
            if self.current_iter % self.log_interval == 0:
                self.data_time = reader_cost_averager.get_average()
                self.step_time = batch_cost_averager.get_average()
                self.ips = batch_cost_averager.get_ips_average()
                self.print_log()

                reader_cost_averager.reset()
                batch_cost_averager.reset()

            if self.current_iter % self.visual_interval == 0:
                self.visual('visual_train')

L
LielinJiang 已提交
200
            self.learning_rate_scheduler_step()
L
LielinJiang 已提交
201

L
LielinJiang 已提交
202
            if self.validate_interval > -1 and self.current_iter % self.validate_interval == 0:
203
                self.test()
L
fix nan  
LielinJiang 已提交
204

L
LielinJiang 已提交
205 206 207
            if self.current_iter % self.weight_interval == 0:
                self.save(self.current_iter, 'weight', keep=-1)
                self.save(self.current_iter)
L
LielinJiang 已提交
208

209
            self.current_iter += 1
L
LielinJiang 已提交
210

L
LielinJiang 已提交
211 212
    def test(self):
        if not hasattr(self, 'test_dataloader'):
213
            self.test_dataloader = build_dataloader(self.cfg.dataset.test,
214 215
                                                    is_train=False,
                                                    distributed=False)
L
lijianshe02 已提交
216 217 218
        iter_loader = IterLoader(self.test_dataloader)
        if self.max_eval_steps is None:
            self.max_eval_steps = len(self.test_dataloader)
219 220 221 222

        if self.metrics:
            for metric in self.metrics.values():
                metric.reset()
L
LielinJiang 已提交
223

L
LielinJiang 已提交
224 225 226
        # set model.is_train = False
        self.model.setup_train_mode(is_train=False)

L
lijianshe02 已提交
227 228
        for i in range(self.max_eval_steps):
            data = next(iter_loader)
229 230
            self.model.setup_input(data)
            self.model.test_iter(metrics=self.metrics)
L
LielinJiang 已提交
231 232

            visual_results = {}
L
LielinJiang 已提交
233 234 235
            current_paths = self.model.get_image_paths()
            current_visuals = self.model.get_current_visuals()

L
LielinJiang 已提交
236 237 238 239 240 241 242 243 244 245 246 247
            if len(current_visuals) > 0 and list(
                    current_visuals.values())[0].shape == 4:
                num_samples = list(current_visuals.values())[0].shape[0]
            else:
                num_samples = 1

            for j in range(num_samples):
                if j < len(current_paths):
                    short_path = os.path.basename(current_paths[j])
                    basename = os.path.splitext(short_path)[0]
                else:
                    basename = '{:04d}_{:04d}'.format(i, j)
L
LielinJiang 已提交
248 249
                for k, img_tensor in current_visuals.items():
                    name = '%s_%s' % (basename, k)
L
LielinJiang 已提交
250 251 252 253
                    if len(img_tensor.shape) == 4:
                        visual_results.update({name: img_tensor[j]})
                    else:
                        visual_results.update({name: img_tensor})
L
LielinJiang 已提交
254

郑启航 已提交
255 256 257 258
            self.visual('visual_test',
                        visual_results=visual_results,
                        step=self.batch_id,
                        is_save_image=True)
L
LielinJiang 已提交
259

L
LielinJiang 已提交
260
            if i % self.log_interval == 0:
261
                self.logger.info('Test iter: [%d/%d]' %
L
lijianshe02 已提交
262
                                 (i, self.max_eval_steps))
L
LielinJiang 已提交
263

264 265 266 267 268
        if self.metrics:
            for metric_name, metric in self.metrics.items():
                self.logger.info("Metric {}: {:.4f}".format(
                    metric_name, metric.accumulate()))

L
LielinJiang 已提交
269 270
    def print_log(self):
        losses = self.model.get_current_losses()
L
LielinJiang 已提交
271

272 273 274 275 276 277 278 279 280
        message = ''
        if self.by_epoch:
            message += 'Epoch: %d/%d, iter: %d/%d ' % (
                self.current_epoch, self.epochs, self.inner_iter,
                self.iters_per_epoch)
        else:
            message += 'Iter: %d/%d ' % (self.current_iter, self.total_iters)

        message += f'lr: {self.current_learning_rate:.3e} '
L
LielinJiang 已提交
281 282 283

        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)
郑启航 已提交
284 285
            if self.enable_visualdl:
                self.vdl_logger.add_scalar(k, v, step=self.global_steps)
L
LielinJiang 已提交
286

287 288 289
        if hasattr(self, 'step_time'):
            message += 'batch_cost: %.5f sec ' % self.step_time

290
        if hasattr(self, 'data_time'):
291
            message += 'reader_cost: %.5f sec ' % self.data_time
292

293
        if hasattr(self, 'ips'):
L
LielinJiang 已提交
294 295 296
            message += 'ips: %.5f images/s ' % self.ips

        if hasattr(self, 'step_time'):
L
LielinJiang 已提交
297 298 299
            eta = self.step_time * (self.total_iters - self.current_iter)
            eta = eta if eta > 0 else 0

L
LielinJiang 已提交
300 301
            eta_str = str(datetime.timedelta(seconds=int(eta)))
            message += f'eta: {eta_str}'
302

L
LielinJiang 已提交
303 304 305 306 307
        # print the message
        self.logger.info(message)

    @property
    def current_learning_rate(self):
L
LielinJiang 已提交
308 309
        for optimizer in self.model.optimizers.values():
            return optimizer.get_lr()
L
LielinJiang 已提交
310

郑启航 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324
    def visual(self,
               results_dir,
               visual_results=None,
               step=None,
               is_save_image=False):
        """
        visual the images, use visualdl or directly write to the directory

        Parameters:
            results_dir (str)     --  directory name which contains saved images
            visual_results (dict) --  the results images dict
            step (int)            --  global steps, used in visualdl
            is_save_image (bool)  --  weather write to the directory or visualdl
        """
L
LielinJiang 已提交
325 326 327 328 329
        self.model.compute_visuals()

        if visual_results is None:
            visual_results = self.model.get_current_visuals()

L
LielinJiang 已提交
330 331 332
        min_max = self.cfg.get('min_max', None)
        if min_max is None:
            min_max = (-1., 1.)
333

郑启航 已提交
334 335 336
        image_num = self.cfg.get('image_num', None)
        if (image_num is None) or (not self.enable_visualdl):
            image_num = 1
L
LielinJiang 已提交
337
        for label, image in visual_results.items():
郑启航 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
            image_numpy = tensor2img(image, min_max, image_num)
            if (not is_save_image) and self.enable_visualdl:
                self.vdl_logger.add_image(
                    results_dir + '/' + label,
                    image_numpy,
                    step=step if step else self.global_steps,
                    dataformats="HWC" if image_num == 1 else "NCHW")
            else:
                if self.cfg.is_train:
                    msg = 'epoch%.3d_' % self.current_epoch
                else:
                    msg = ''
                makedirs(os.path.join(self.output_dir, results_dir))
                img_path = os.path.join(self.output_dir, results_dir,
                                        msg + '%s.png' % (label))
                save_image(image_numpy, img_path)
L
LielinJiang 已提交
354 355 356 357

    def save(self, epoch, name='checkpoint', keep=1):
        if self.local_rank != 0:
            return
L
LielinJiang 已提交
358

L
LielinJiang 已提交
359 360 361
        assert name in ['checkpoint', 'weight']

        state_dicts = {}
L
LielinJiang 已提交
362 363 364 365 366 367
        if self.by_epoch:
            save_filename = 'epoch_%s_%s.pdparams' % (
                epoch // self.iters_per_epoch, name)
        else:
            save_filename = 'iter_%s_%s.pdparams' % (epoch, name)

L
lijianshe02 已提交
368
        os.makedirs(self.output_dir, exist_ok=True)
L
LielinJiang 已提交
369
        save_path = os.path.join(self.output_dir, save_filename)
L
LielinJiang 已提交
370 371
        for net_name, net in self.model.nets.items():
            state_dicts[net_name] = net.state_dict()
L
LielinJiang 已提交
372 373 374 375 376 377 378

        if name == 'weight':
            save(state_dicts, save_path)
            return

        state_dicts['epoch'] = epoch

L
LielinJiang 已提交
379 380
        for opt_name, opt in self.model.optimizers.items():
            state_dicts[opt_name] = opt.state_dict()
L
LielinJiang 已提交
381 382 383 384 385

        save(state_dicts, save_path)

        if keep > 0:
            try:
L
LielinJiang 已提交
386 387 388 389 390 391 392 393 394 395
                if self.by_epoch:
                    checkpoint_name_to_be_removed = os.path.join(
                        self.output_dir, 'epoch_%s_%s.pdparams' %
                        ((epoch - keep * self.weight_interval) //
                         self.iters_per_epoch, name))
                else:
                    checkpoint_name_to_be_removed = os.path.join(
                        self.output_dir, 'iter_%s_%s.pdparams' %
                        (epoch - keep * self.weight_interval, name))

L
LielinJiang 已提交
396 397 398 399 400 401 402 403 404 405
                if os.path.exists(checkpoint_name_to_be_removed):
                    os.remove(checkpoint_name_to_be_removed)

            except Exception as e:
                self.logger.info('remove old checkpoints error: {}'.format(e))

    def resume(self, checkpoint_path):
        state_dicts = load(checkpoint_path)
        if state_dicts.get('epoch', None) is not None:
            self.start_epoch = state_dicts['epoch'] + 1
L
LielinJiang 已提交
406
            self.global_steps = self.iters_per_epoch * state_dicts['epoch']
L
LielinJiang 已提交
407

L
lijianshe02 已提交
408 409
            self.current_iter = state_dicts['epoch'] + 1

L
LielinJiang 已提交
410
        for net_name, net in self.model.nets.items():
411
            net.set_state_dict(state_dicts[net_name])
L
LielinJiang 已提交
412

L
LielinJiang 已提交
413
        for opt_name, opt in self.model.optimizers.items():
414
            opt.set_state_dict(state_dicts[opt_name])
L
LielinJiang 已提交
415 416 417

    def load(self, weight_path):
        state_dicts = load(weight_path)
L
LielinJiang 已提交
418

L
LielinJiang 已提交
419
        for net_name, net in self.model.nets.items():
420 421 422 423 424 425 426 427
            if net_name in state_dicts:
                net.set_state_dict(state_dicts[net_name])
                self.logger.info(
                    'Loaded pretrained weight for net {}'.format(net_name))
            else:
                self.logger.warning(
                    'Can not find state dict of net {}. Skip load pretrained weight for net {}'
                    .format(net_name, net_name))
郑启航 已提交
428 429 430 431 432 433 434 435

    def close(self):
        """
        when finish the training need close file handler or other.

        """
        if self.enable_visualdl:
            self.vdl_logger.close()