pipeline.py 46.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
23
import copy
Z
zhiboniu 已提交
24
from collections import Sequence, defaultdict
Z
zhiboniu 已提交
25
from datacollector import DataCollector, Result
26 27 28 29 30

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

Z
zhiboniu 已提交
31 32 33
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint

34
from python.infer import Detector, DetectorPicoDet
J
JYChen 已提交
35 36
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
37
from python.preprocess import decode_image, ShortSizeScale
Z
zhiboniu 已提交
38
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action, visualize_vehicleplate
39 40

from pptracking.python.mot_sde_infer import SDE_Detector
41 42
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
43

Z
zhiboniu 已提交
44 45 46 47 48 49 50
from pphuman.attr_infer import AttrDetector
from pphuman.video_action_infer import VideoActionRecognizer
from pphuman.action_infer import SkeletonActionRecognizer, DetActionRecognizer, ClsActionRecognizer
from pphuman.action_utils import KeyPointBuff, ActionVisualHelper
from pphuman.reid import ReID
from pphuman.mtmct import mtmct_process

51 52 53
from ppvehicle.vehicle_plate import PlateRecognizer
from ppvehicle.vehicle_attr import VehicleAttr

54 55
from download import auto_download_model

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
80 81 82
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
83
            or getting out from the entrance, default as False, only support single class
84
            counting in MOT.
85 86
    """

Z
zhiboniu 已提交
87
    def __init__(self, args, cfg):
88
        self.multi_camera = False
Z
zhiboniu 已提交
89 90
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
91
        self.is_video = False
Z
zhiboniu 已提交
92
        self.output_dir = args.output_dir
Z
zhiboniu 已提交
93
        self.vis_result = cfg['visual']
Z
zhiboniu 已提交
94 95 96
        self.input = self._parse_input(args.image_file, args.image_dir,
                                       args.video_file, args.video_dir,
                                       args.camera_id)
97
        if self.multi_camera:
98 99 100
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
Z
zhiboniu 已提交
101
                    args, cfg, is_video=True, multi_camera=True)
102 103 104
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

105
        else:
Z
zhiboniu 已提交
106
            self.predictor = PipePredictor(args, cfg, self.is_video)
107
            if self.is_video:
Z
zhiboniu 已提交
108
                self.predictor.set_file_name(args.video_file)
109

Z
zhiboniu 已提交
110 111 112 113
        self.output_dir = args.output_dir
        self.draw_center_traj = args.draw_center_traj
        self.secs_interval = args.secs_interval
        self.do_entrance_counting = args.do_entrance_counting
114 115 116 117 118 119 120
        self.do_break_in_counting = args.do_break_in_counting
        self.region_type = args.region_type
        self.region_polygon = args.region_polygon
        if self.region_type == 'custom':
            assert len(
                self.region_polygon
            ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'
121

Z
zhiboniu 已提交
122 123
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
124 125 126 127 128 129 130 131 132

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
Z
zhiboniu 已提交
133 134 135
            assert os.path.exists(
                video_file
            ) or 'rtsp' in video_file, "video_file not exists and not an rtsp site."
Z
zhiboniu 已提交
136 137 138 139 140 141 142
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
143
                self.multi_camera = True
Z
zhiboniu 已提交
144 145
                videof.sort()
                input = videof
146
            else:
Z
zhiboniu 已提交
147
                input = videof[0]
148 149 150
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
151 152
            self.multi_camera = False
            input = camera_id
153 154 155 156
            self.is_video = True

        else:
            raise ValueError(
157
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
158 159 160 161 162 163 164 165 166
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
167 168
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
169 170 171 172 173 174
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
175 176 177 178 179

        else:
            self.predictor.run(self.input)


180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def get_model_dir(cfg):
    # auto download inference model
    model_dir_dict = {}
    for key in cfg.keys():
        if type(cfg[key]) ==  dict and \
            ("enable" in cfg[key].keys() and cfg[key]['enable']
                or "enable" not in cfg[key].keys()):

            if "model_dir" in cfg[key].keys():
                model_dir = cfg[key]["model_dir"]
                downloaded_model_dir = auto_download_model(model_dir)
                if downloaded_model_dir:
                    model_dir = downloaded_model_dir
                model_dir_dict[key] = model_dir
                print(key, " model dir:", model_dir)
            elif key == "VEHICLE_PLATE":
                det_model_dir = cfg[key]["det_model_dir"]
                downloaded_det_model_dir = auto_download_model(det_model_dir)
                if downloaded_det_model_dir:
                    det_model_dir = downloaded_det_model_dir
                model_dir_dict["det_model_dir"] = det_model_dir
                print("det_model_dir model dir:", det_model_dir)

                rec_model_dir = cfg[key]["rec_model_dir"]
                downloaded_rec_model_dir = auto_download_model(rec_model_dir)
                if downloaded_rec_model_dir:
                    rec_model_dir = downloaded_rec_model_dir
                model_dir_dict["rec_model_dir"] = rec_model_dir
                print("rec_model_dir model dir:", rec_model_dir)
        elif key == "MOT":  # for idbased and skeletonbased actions
            model_dir = cfg[key]["model_dir"]
            downloaded_model_dir = auto_download_model(model_dir)
            if downloaded_model_dir:
                model_dir = downloaded_model_dir
            model_dir_dict[key] = model_dir

    return model_dir_dict


219 220 221 222 223 224 225 226 227 228 229 230 231
class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
232
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
233
        4. VideoAction Recognition
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
253 254 255
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
256
            or getting out from the entrance, default as False, only support single class
257
            counting in MOT.
258 259
    """

Z
zhiboniu 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272
    def __init__(self, args, cfg, is_video=True, multi_camera=False):
        device = args.device
        run_mode = args.run_mode
        trt_min_shape = args.trt_min_shape
        trt_max_shape = args.trt_max_shape
        trt_opt_shape = args.trt_opt_shape
        trt_calib_mode = args.trt_calib_mode
        cpu_threads = args.cpu_threads
        enable_mkldnn = args.enable_mkldnn
        output_dir = args.output_dir
        draw_center_traj = args.draw_center_traj
        secs_interval = args.secs_interval
        do_entrance_counting = args.do_entrance_counting
273 274 275
        do_break_in_counting = args.do_break_in_counting
        region_type = args.region_type
        region_polygon = args.region_polygon
Z
zhiboniu 已提交
276 277 278 279

        # general module for pphuman and ppvehicle
        self.with_mot = cfg.get('MOT', False)['enable'] if cfg.get(
            'MOT', False) else False
280
        self.with_human_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
Z
zhiboniu 已提交
281
            'ATTR', False) else False
Z
zhiboniu 已提交
282 283
        if self.with_mot:
            print('Multi-Object Tracking enabled')
284 285
        if self.with_human_attr:
            print('Human Attribute Recognition enabled')
Z
zhiboniu 已提交
286 287

        # only for pphuman
Z
zhiboniu 已提交
288 289 290
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
291 292 293 294 295 296 297 298 299
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
300 301
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
302

Z
zhiboniu 已提交
303 304
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
305 306 307 308 309 310
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
311 312
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
313

Z
zhiboniu 已提交
314 315 316 317 318 319 320
        # only for ppvehicle
        self.with_vehicleplate = cfg.get(
            'VEHICLE_PLATE', False)['enable'] if cfg.get('VEHICLE_PLATE',
                                                         False) else False
        if self.with_vehicleplate:
            print('Vehicle Plate Recognition enabled')

321 322 323 324 325 326
        self.with_vehicle_attr = cfg.get(
            'VEHICLE_ATTR', False)['enable'] if cfg.get('VEHICLE_ATTR',
                                                        False) else False
        if self.with_vehicle_attr:
            print('Vehicle Attribute Recognition enabled')

327 328 329 330 331 332
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
333

334 335 336 337
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
338 339 340
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
341 342 343
        self.do_break_in_counting = do_break_in_counting
        self.region_type = region_type
        self.region_polygon = region_polygon
344

J
JYChen 已提交
345
        self.warmup_frame = self.cfg['warmup_frame']
346 347
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
348
        self.file_name = None
Z
zhiboniu 已提交
349
        self.collector = DataCollector()
350

351 352 353
        # auto download inference model
        model_dir_dict = get_model_dir(self.cfg)

354 355
        if not is_video:
            det_cfg = self.cfg['DET']
356
            model_dir = model_dir_dict['DET']
357 358 359 360 361
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
362
            if self.with_human_attr:
363
                attr_cfg = self.cfg['ATTR']
364
                model_dir = model_dir_dict['ATTR']
365
                batch_size = attr_cfg['batch_size']
366 367
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
368 369 370 371 372
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

373 374
            if self.with_vehicle_attr:
                vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
375
                model_dir = model_dir_dict['VEHICLE_ATTR']
376 377 378 379 380 381 382 383 384 385
                batch_size = vehicleattr_cfg['batch_size']
                color_threshold = vehicleattr_cfg['color_threshold']
                type_threshold = vehicleattr_cfg['type_threshold']
                basemode = vehicleattr_cfg['basemode']
                self.modebase[basemode] = True
                self.vehicle_attr_predictor = VehicleAttr(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn, color_threshold, type_threshold)

386
        else:
387
            if self.with_human_attr:
388
                attr_cfg = self.cfg['ATTR']
389
                model_dir = model_dir_dict['ATTR']
390
                batch_size = attr_cfg['batch_size']
391 392
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
393 394 395 396
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
Z
zhiboniu 已提交
397
            if self.with_idbased_detaction:
J
JYChen 已提交
398
                idbased_detaction_cfg = self.cfg['ID_BASED_DETACTION']
399
                model_dir = model_dir_dict['ID_BASED_DETACTION']
J
JYChen 已提交
400 401 402 403
                batch_size = idbased_detaction_cfg['batch_size']
                basemode = idbased_detaction_cfg['basemode']
                threshold = idbased_detaction_cfg['threshold']
                display_frames = idbased_detaction_cfg['display_frames']
404
                skip_frame_num = idbased_detaction_cfg['skip_frame_num']
J
JYChen 已提交
405
                self.modebase[basemode] = True
406

J
JYChen 已提交
407 408 409 410 411 412 413 414 415 416 417 418
                self.det_action_predictor = DetActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
419 420
                    display_frames=display_frames,
                    skip_frame_num=skip_frame_num)
J
JYChen 已提交
421 422
                self.det_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
423
            if self.with_idbased_clsaction:
J
JYChen 已提交
424
                idbased_clsaction_cfg = self.cfg['ID_BASED_CLSACTION']
425
                model_dir = model_dir_dict['ID_BASED_CLSACTION']
J
JYChen 已提交
426 427 428 429 430
                batch_size = idbased_clsaction_cfg['batch_size']
                basemode = idbased_clsaction_cfg['basemode']
                threshold = idbased_clsaction_cfg['threshold']
                self.modebase[basemode] = True
                display_frames = idbased_clsaction_cfg['display_frames']
431 432
                skip_frame_num = idbased_clsaction_cfg['skip_frame_num']

J
JYChen 已提交
433 434 435 436 437 438 439 440 441 442 443 444
                self.cls_action_predictor = ClsActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
445 446
                    display_frames=display_frames,
                    skip_frame_num=skip_frame_num)
J
JYChen 已提交
447 448
                self.cls_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
449 450
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
451
                skeleton_action_model_dir = model_dir_dict['SKELETON_ACTION']
Z
zhiboniu 已提交
452 453 454 455 456
                skeleton_action_batch_size = skeleton_action_cfg['batch_size']
                skeleton_action_frames = skeleton_action_cfg['max_frames']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
                basemode = skeleton_action_cfg['basemode']
457 458
                self.modebase[basemode] = True

Z
zhiboniu 已提交
459 460
                self.skeleton_action_predictor = SkeletonActionRecognizer(
                    skeleton_action_model_dir,
J
JYChen 已提交
461 462
                    device,
                    run_mode,
Z
zhiboniu 已提交
463
                    skeleton_action_batch_size,
J
JYChen 已提交
464 465 466 467 468 469
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
Z
zhiboniu 已提交
470
                    window_size=skeleton_action_frames)
J
JYChen 已提交
471
                self.skeleton_action_visual_helper = ActionVisualHelper(
Z
zhiboniu 已提交
472
                    display_frames)
473 474 475

                if self.modebase["skeletonbased"]:
                    kpt_cfg = self.cfg['KPT']
476
                    kpt_model_dir = model_dir_dict['KPT']
477 478 479 480 481 482 483 484 485 486 487 488 489
                    kpt_batch_size = kpt_cfg['batch_size']
                    self.kpt_predictor = KeyPointDetector(
                        kpt_model_dir,
                        device,
                        run_mode,
                        kpt_batch_size,
                        trt_min_shape,
                        trt_max_shape,
                        trt_opt_shape,
                        trt_calib_mode,
                        cpu_threads,
                        enable_mkldnn,
                        use_dark=False)
Z
zhiboniu 已提交
490
                    self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
491

Z
zhiboniu 已提交
492 493 494 495 496 497 498
            if self.with_vehicleplate:
                vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
                self.vehicleplate_detector = PlateRecognizer(args,
                                                             vehicleplate_cfg)
                basemode = vehicleplate_cfg['basemode']
                self.modebase[basemode] = True

499 500
            if self.with_vehicle_attr:
                vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
501
                model_dir = model_dir_dict['VEHICLE_ATTR']
502 503 504 505 506 507 508 509 510 511
                batch_size = vehicleattr_cfg['batch_size']
                color_threshold = vehicleattr_cfg['color_threshold']
                type_threshold = vehicleattr_cfg['type_threshold']
                basemode = vehicleattr_cfg['basemode']
                self.modebase[basemode] = True
                self.vehicle_attr_predictor = VehicleAttr(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn, color_threshold, type_threshold)

Z
zhiboniu 已提交
512 513
            if self.with_mtmct:
                reid_cfg = self.cfg['REID']
514
                model_dir = model_dir_dict['REID']
Z
zhiboniu 已提交
515 516 517 518 519 520 521 522
                batch_size = reid_cfg['batch_size']
                basemode = reid_cfg['basemode']
                self.modebase[basemode] = True
                self.reid_predictor = ReID(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

Z
zhiboniu 已提交
523 524 525
            if self.with_mot or self.modebase["idbased"] or self.modebase[
                    "skeletonbased"]:
                mot_cfg = self.cfg['MOT']
526
                model_dir = model_dir_dict['MOT']
Z
zhiboniu 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
                tracker_config = mot_cfg['tracker_config']
                batch_size = mot_cfg['batch_size']
                basemode = mot_cfg['basemode']
                self.modebase[basemode] = True
                self.mot_predictor = SDE_Detector(
                    model_dir,
                    tracker_config,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    draw_center_traj=draw_center_traj,
                    secs_interval=secs_interval,
545 546 547 548
                    do_entrance_counting=do_entrance_counting,
                    do_break_in_counting=do_break_in_counting,
                    region_type=region_type,
                    region_polygon=region_polygon)
Z
zhiboniu 已提交
549

550 551 552 553 554 555
            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']

                basemode = video_action_cfg['basemode']
                self.modebase[basemode] = True

556
                video_action_model_dir = model_dir_dict['VIDEO_ACTION']
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
                video_action_batch_size = video_action_cfg['batch_size']
                short_size = video_action_cfg["short_size"]
                target_size = video_action_cfg["target_size"]

                self.video_action_predictor = VideoActionRecognizer(
                    model_dir=video_action_model_dir,
                    short_size=short_size,
                    target_size=target_size,
                    device=device,
                    run_mode=run_mode,
                    batch_size=video_action_batch_size,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    trt_calib_mode=trt_calib_mode,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn)

575
    def set_file_name(self, path):
W
wangguanzhong 已提交
576 577 578 579 580
        if path is not None:
            self.file_name = os.path.split(path)[-1]
        else:
            # use camera id
            self.file_name = None
581

582
    def get_result(self):
Z
zhiboniu 已提交
583
        return self.collector.get_res()
584 585 586 587 588 589

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
590
        self.pipe_timer.info()
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
609 610
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
611 612 613 614
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

615
            if self.with_human_attr:
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
            if self.with_vehicle_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                vehicle_attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    vehicle_attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].end()

                attr_res = {'output': vehicle_attr_res_list}
                self.pipeline_res.update(attr_res, 'vehicle_attr')

651 652 653 654 655 656 657
            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
658
    def predict_video(self, video_file):
659 660 661
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
662
        capture = cv2.VideoCapture(video_file)
663
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
Z
zhiboniu 已提交
664 665
        if "rtsp" in video_file:
            video_out_name = video_out_name + "_rtsp.mp4"
666 667 668 669 670 671

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
672
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
673 674 675 676 677 678 679

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
680 681 682 683 684 685 686 687 688 689

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
        if self.do_entrance_counting or self.do_break_in_counting:
            if self.region_type == 'horizontal':
                entrance = [0, height / 2., width, height / 2.]
            elif self.region_type == 'vertical':
                entrance = [width / 2, 0., width / 2, height]
            elif self.region_type == 'custom':
                entrance = []
                assert len(
                    self.region_polygon
                ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
                for i in range(0, len(self.region_polygon), 2):
                    entrance.append(
                        [self.region_polygon[i], self.region_polygon[i + 1]])
                entrance.append([width, height])
            else:
                raise ValueError("region_type:{} unsupported.".format(
                    self.region_type))

708 709
        video_fps = fps

710 711
        video_action_imgs = []

712 713 714 715
        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

716 717 718
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
719

720 721 722
            ret, frame = capture.read()
            if not ret:
                break
723
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
724

725
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
726
                if frame_id > self.warmup_frame:
727 728 729
                    self.pipe_timer.total_time.start()
                    self.pipe_timer.module_time['mot'].start()
                res = self.mot_predictor.predict_image(
730
                    [copy.deepcopy(frame_rgb)], visual=False)
731

J
JYChen 已提交
732
                if frame_id > self.warmup_frame:
733 734 735 736 737 738 739 740 741 742 743
                    self.pipe_timer.module_time['mot'].end()

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)

                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
                    mot_result, self.secs_interval, self.do_entrance_counting,
744 745 746
                    self.do_break_in_counting, self.region_type, video_fps,
                    entrance, id_set, interval_id_set, in_id_list, out_id_list,
                    prev_center, records)
747 748 749 750 751
                records = statistic['records']

                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
752
                    if frame_id > self.warmup_frame:
753 754 755 756 757 758 759 760 761
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id, fps,
                                                  entrance, records,
                                                  center_traj)  # visualize
                        writer.write(im)
                        if self.file_name is None:  # use camera_id
Z
zhiboniu 已提交
762
                            cv2.imshow('Paddle-Pipeline', im)
763 764 765 766 767
                            if cv2.waitKey(1) & 0xFF == ord('q'):
                                break
                    continue

                self.pipeline_res.update(mot_res, 'mot')
J
JYChen 已提交
768
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
769
                    frame_rgb, mot_res)
770

Z
zhiboniu 已提交
771
                if self.with_vehicleplate:
Z
zhiboniu 已提交
772 773
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].start()
Z
zhiboniu 已提交
774 775
                    plate_input, _, _ = crop_image_with_mot(
                        frame_rgb, mot_res, expand=False)
Z
zhiboniu 已提交
776
                    platelicense = self.vehicleplate_detector.get_platelicense(
Z
zhiboniu 已提交
777
                        plate_input)
Z
zhiboniu 已提交
778 779
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].end()
Z
zhiboniu 已提交
780 781
                    self.pipeline_res.update(platelicense, 'vehicleplate')

782
                if self.with_human_attr:
J
JYChen 已提交
783
                    if frame_id > self.warmup_frame:
784 785 786 787 788 789 790
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

791 792 793 794 795 796 797 798 799
                if self.with_vehicle_attr:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].start()
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].end()
                    self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
800
                if self.with_idbased_detaction:
J
JYChen 已提交
801 802 803 804 805 806 807 808 809 810
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].start()
                    det_action_res = self.det_action_predictor.predict(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].end()
                    self.pipeline_res.update(det_action_res, 'det_action')

                    if self.cfg['visual']:
                        self.det_action_visual_helper.update(det_action_res)
Z
zhiboniu 已提交
811 812

                if self.with_idbased_clsaction:
J
JYChen 已提交
813 814 815 816 817 818 819 820 821 822
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].start()
                    cls_action_res = self.cls_action_predictor.predict_with_mot(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].end()
                    self.pipeline_res.update(cls_action_res, 'cls_action')

                    if self.cfg['visual']:
                        self.cls_action_visual_helper.update(cls_action_res)
Z
zhiboniu 已提交
823

Z
zhiboniu 已提交
824
                if self.with_skeleton_action:
Z
zhiboniu 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()
838

Z
zhiboniu 已提交
839
                    self.pipeline_res.update(kpt_res, 'kpt')
840

Z
zhiboniu 已提交
841
                    self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
842 843 844
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
845
                    skeleton_action_res = {}
846 847
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
848 849
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
850 851
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
852 853 854 855
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
856
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
857 858 859
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
860 861

                    if self.cfg['visual']:
Z
zhiboniu 已提交
862 863
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
864 865 866

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
867
                        frame_rgb, mot_res)
868 869 870 871 872 873
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
874

875 876 877 878 879 880 881 882
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
883

Z
zhiboniu 已提交
884
            if self.with_video_action:
885 886 887 888 889 890 891 892 893 894 895 896 897
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
898
                    # Scale image
899
                    scaled_img = scale(frame_rgb)
900
                    video_action_imgs.append(scaled_img)
901 902 903 904 905 906 907 908 909 910 911 912 913 914

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {"class": classes[0], "score": scores[0]}
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip
Z
zhiboniu 已提交
915 916

            self.collector.append(frame_id, self.pipeline_res)
917 918 919 920 921 922 923

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
924 925
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
926 927
                                          fps, entrance, records,
                                          center_traj)  # visualize
928
                writer.write(im)
W
wangguanzhong 已提交
929
                if self.file_name is None:  # use camera_id
Z
zhiboniu 已提交
930
                    cv2.imshow('Paddle-Pipeline', im)
W
wangguanzhong 已提交
931 932
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
933 934 935 936

        writer.release()
        print('save result to {}'.format(out_path))

937 938 939 940 941 942 943 944
    def visualize_video(self,
                        image,
                        result,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
945
        mot_res = copy.deepcopy(result.get('mot'))
946 947
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
948
            scores = mot_res['boxes'][:, 2]
949 950 951 952 953 954
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
955
            scores = np.zeros([0])
956 957 958 959 960 961 962 963 964 965

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

F
Feng Ni 已提交
966 967 968 969 970 971 972 973 974
        if mot_res is not None:
            image = plot_tracking_dict(
                image,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
975
                ids2names=self.mot_predictor.pred_config.labels,
F
Feng Ni 已提交
976
                do_entrance_counting=self.do_entrance_counting,
977
                do_break_in_counting=self.do_break_in_counting,
F
Feng Ni 已提交
978 979 980
                entrance=entrance,
                records=records,
                center_traj=center_traj)
981

982 983 984 985 986 987 988 989 990
        human_attr_res = result.get('attr')
        if human_attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            human_attr_res = human_attr_res['output']
            image = visualize_attr(image, human_attr_res, boxes)
            image = np.array(image)

        vehicle_attr_res = result.get('vehicle_attr')
        if vehicle_attr_res is not None:
991
            boxes = mot_res['boxes'][:, 1:]
992 993
            vehicle_attr_res = vehicle_attr_res['output']
            image = visualize_attr(image, vehicle_attr_res, boxes)
994 995
            image = np.array(image)

Z
zhiboniu 已提交
996 997 998 999 1000 1001 1002
        vehicleplate_res = result.get('vehicleplate')
        if vehicleplate_res:
            boxes = mot_res['boxes'][:, 1:]
            image = visualize_vehicleplate(image, vehicleplate_res['plate'],
                                           boxes)
            image = np.array(image)

J
JYChen 已提交
1003 1004 1005 1006 1007 1008 1009 1010
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

1011
        video_action_res = result.get('video_action')
J
JYChen 已提交
1012
        if video_action_res is not None:
1013 1014 1015
            video_action_score = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
1016 1017 1018
            mot_boxes = None
            if mot_res:
                mot_boxes = mot_res['boxes']
1019 1020
            image = visualize_action(
                image,
1021
                mot_boxes,
J
JYChen 已提交
1022
                action_visual_collector=None,
1023 1024 1025
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")
J
JYChen 已提交
1026

J
JYChen 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        visual_helper_for_display = []
        action_to_display = []

        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
            visual_helper_for_display.append(self.skeleton_action_visual_helper)
            action_to_display.append("Falling")

        det_action_res = result.get('det_action')
        if det_action_res is not None:
            visual_helper_for_display.append(self.det_action_visual_helper)
            action_to_display.append("Smoking")

        cls_action_res = result.get('cls_action')
        if cls_action_res is not None:
            visual_helper_for_display.append(self.cls_action_visual_helper)
            action_to_display.append("Calling")

        if len(visual_helper_for_display) > 0:
            image = visualize_action(image, mot_res['boxes'],
                                     visual_helper_for_display,
                                     action_to_display)

1050 1051 1052 1053 1054
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
1055 1056 1057
        human_attr_res = result.get('attr')
        vehicle_attr_res = result.get('vehicle_attr')

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
1069 1070
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
1071 1072 1073 1074 1075 1076 1077 1078 1079
            if human_attr_res is not None:
                human_attr_res_i = human_attr_res['output'][start_idx:start_idx
                                                            + boxes_num_i]
                im = visualize_attr(im, human_attr_res_i, det_res_i['boxes'])
            if vehicle_attr_res is not None:
                vehicle_attr_res_i = vehicle_attr_res['output'][
                    start_idx:start_idx + boxes_num_i]
                im = visualize_attr(im, vehicle_attr_res_i, det_res_i['boxes'])

1080 1081 1082 1083
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
1084
            cv2.imwrite(out_path, im)
1085 1086 1087 1088 1089 1090 1091
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
1092

Z
zhiboniu 已提交
1093
    pipeline = Pipeline(FLAGS, cfg)
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()