parallel_executor.cc 13.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
X
Xin Pan 已提交
23

Y
Yu Yang 已提交
24
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
25
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
26
#endif
Y
Yang Yang 已提交
27

Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
X
Xin Pan 已提交
29 30
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
Y
yuyang18 已提交
31
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yang Yang 已提交
35
namespace paddle {
Y
Yu Yang 已提交
36 37
namespace framework {

X
Xin Pan 已提交
38 39 40 41
std::unique_ptr<ir::Graph> ApplyParallelExecutorPass(
    const ProgramDesc &main_program, const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &param_names,
M
minqiyang 已提交
42
    const std::vector<Scope *> &local_scopes, const bool use_cuda,
X
Xin Pan 已提交
43 44 45 46 47
#ifdef PADDLE_WITH_CUDA
    const BuildStrategy &strategy, platform::NCCLContextMap *nccl_ctxs) {
#else
    const BuildStrategy &strategy) {
#endif
X
Xin Pan 已提交
48
  // Convert the program to graph.
X
Xin Pan 已提交
49
  std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
X
Xin Pan 已提交
50 51

  // Apply a graph viz pass to record a graph.
X
Xin Pan 已提交
52 53 54 55 56 57 58 59
  if (!strategy.debug_graphviz_path_.empty()) {
    auto viz_pass = ir::PassRegistry::Instance().Get("graph_viz_pass");
    const std::string graph_path = string::Sprintf(
        "%s%s", strategy.debug_graphviz_path_.c_str(), "_original_graph");
    viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
    graph = viz_pass->Apply(std::move(graph));
  }

X
Xin Pan 已提交
60
  // Convert graph to run on multi-devices.
X
Xin Pan 已提交
61 62 63 64 65 66 67
  auto multi_devices_pass =
      ir::PassRegistry::Instance().Get("multi_devices_pass");
  multi_devices_pass->SetNotOwned<const std::vector<platform::Place>>("places",
                                                                      &places);
  multi_devices_pass->SetNotOwned<const std::string>("loss_var_name",
                                                     &loss_var_name);
  multi_devices_pass->SetNotOwned<const std::unordered_set<std::string>>(
X
Xin Pan 已提交
68
      "params", &param_names);
M
minqiyang 已提交
69 70
  multi_devices_pass->SetNotOwned<const std::vector<Scope *>>("local_scopes",
                                                              &local_scopes);
X
Xin Pan 已提交
71
  multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy", &strategy);
X
Xin Pan 已提交
72 73 74

#ifdef PADDLE_WITH_CUDA
  platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
X
Xin Pan 已提交
75
  multi_devices_pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
X
Xin Pan 已提交
76
#endif
X
Xin Pan 已提交
77
  graph = multi_devices_pass->Apply(std::move(graph));
X
Xin Pan 已提交
78

X
Xin Pan 已提交
79
  // Apply a graph print pass to record a graph with device info.
X
Xin Pan 已提交
80
  if (!strategy.debug_graphviz_path_.empty()) {
X
Xin Pan 已提交
81 82 83
    auto multi_devices_print_pass =
        ir::PassRegistry::Instance().Get("multi_devices_print_pass");
    multi_devices_print_pass->SetNotOwned<const std::string>(
X
Xin Pan 已提交
84
        "debug_graphviz_path", &strategy.debug_graphviz_path_);
X
Xin Pan 已提交
85
    multi_devices_print_pass->Set<details::GraphvizSSAGraphPrinter>(
X
Xin Pan 已提交
86
        "graph_printer", new details::GraphvizSSAGraphPrinter);
X
Xin Pan 已提交
87
    graph = multi_devices_print_pass->Apply(std::move(graph));
X
Xin Pan 已提交
88 89
  }

X
Xin Pan 已提交
90
  // Verify that the graph is correct for multi-device executor.
X
Xin Pan 已提交
91 92 93
  auto multi_devices_check_pass =
      ir::PassRegistry::Instance().Get("multi_devices_check_pass");
  graph = multi_devices_check_pass->Apply(std::move(graph));
X
Xin Pan 已提交
94 95 96
  return graph;
}

Y
Yu Yang 已提交
97 98 99
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
100
      : places_(places) {}
Y
Yu Yang 已提交
101 102 103 104

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
105
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
106

Y
Yu Yang 已提交
107
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
108
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
109
#endif
C
chengduoZH 已提交
110 111
  bool own_local_scope_;
  bool use_cuda_;
112
  bool use_all_reduce_;
Y
Yu Yang 已提交
113 114
};

115 116 117 118
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
119
ParallelExecutor::ParallelExecutor(
120
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
121
    const std::unordered_set<std::string> &params,
122 123
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
124
    Scope *scope, const std::vector<Scope *> &local_scopes,
125
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
126
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
127
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
128
  member_->global_scope_ = scope;
129
  member_->use_cuda_ = exec_strategy.use_cuda_;
130 131 132 133 134 135 136 137
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
138

139
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
140
  // Create local scopes
141
  if (local_scopes.empty()) {
C
chengduoZH 已提交
142
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
143 144
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
145
      member_->local_scopes_.emplace_back(&scope->NewScope());
146 147
    }
  } else {
C
chengduoZH 已提交
148
    member_->own_local_scope_ = false;
149 150
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
151
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
152
    }
Y
Yu Yang 已提交
153 154
  }

C
chengduoZH 已提交
155
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
156 157
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
158 159 160 161 162 163 164 165 166
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
167
#endif
C
chengduoZH 已提交
168 169 170
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
171
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
172
  }
Y
yuyang18 已提交
173 174 175 176 177 178 179 180 181 182
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
183

X
Xin Pan 已提交
184 185
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
Y
yuyang18 已提交
186
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
187 188 189 190
  std::unique_ptr<ir::Graph> graph = ApplyParallelExecutorPass(
      main_program, member_->places_, loss_var_name, params,
      member_->local_scopes_, member_->use_cuda_, build_strategy,
      member_->nccl_ctxs_.get());
S
sneaxiy 已提交
191 192 193 194 195 196 197 198 199 200 201 202

  auto max_memory_size = GetEagerDeletionThreshold();
  if (max_memory_size >= 0) {
    for (auto &place : member_->places_) {
      if (!platform::is_gpu_place(place)) continue;
      auto gpu_place = boost::get<platform::CUDAPlace>(place);
      if (gcs_[gpu_place.device] == nullptr) {
        ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
        cur_ref_cnts_[gpu_place.device].reset(
            new details::AtomicReferenceCountMap());
        gcs_[gpu_place.device].reset(
            new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
S
sneaxiy 已提交
203 204
      }
    }
S
sneaxiy 已提交
205 206 207 208 209 210 211 212 213 214
    if (!gcs_.empty()) {
      auto ref_cnt_pass =
          ir::PassRegistry::Instance().Get("reference_count_pass");
      ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = ref_cnt_pass->Apply(std::move(graph));
      graph->SetNotOwned("garbage_collector", &gcs_);
    }
  }
C
chengduoZH 已提交
215
#else
X
Xin Pan 已提交
216 217 218
  std::unique_ptr<ir::Graph> graph = ApplyParallelExecutorPass(
      main_program, member_->places_, loss_var_name, params,
      member_->local_scopes_, member_->use_cuda_, build_strategy);
Y
Yu Yang 已提交
219
#endif
X
Xin Pan 已提交
220

Y
yuyang18 已提交
221 222 223 224 225 226
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
C
chengduoZH 已提交
227
  }
Y
yuyang18 已提交
228 229 230 231

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
232 233
}

Y
Yancey1989 已提交
234
void ParallelExecutor::BCastParamsToDevices(
235
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
236
  // the initializing bcast, all vars would be bcast from device(0).
237
  for (auto &var : vars) {
X
Xin Pan 已提交
238
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
239
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
240 241 242 243 244 245
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
246
#ifdef PADDLE_WITH_CUDA
247
      std::vector<void *> buffers;
248 249 250 251 252
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
253

X
Xin Pan 已提交
254
        if (i == 0) {
255 256
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
257
          auto local_scope = member_->local_scopes_[i];
258
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
259
          t->Resize(dims);
260
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
261
        }
262
        buffers.push_back(buffer);
263
      }
264

265 266 267 268 269 270
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
271 272
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
273
        }
274
        member_->nccl_ctxs_->WaitAll();
275
      }
C
chengduoZH 已提交
276 277 278
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
279 280
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
281
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
282
        if (i == 0) continue;
Y
Yancey1989 已提交
283

284 285
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
286 287 288 289

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
290 291 292 293 294 295
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
296
      }
Y
Stash  
Yu Yang 已提交
297 298
    }
  }
Y
Yu Yang 已提交
299
}
Y
Yu Yang 已提交
300

Y
Yu Yang 已提交
301 302
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
303
  platform::RecordBlock b(0);
S
sneaxiy 已提交
304 305 306 307 308
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
  }
#endif
Y
Yu Yang 已提交
309 310 311
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
312
}
Y
Yu Yang 已提交
313

Y
Yu Yang 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
333 334 335 336 337
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
338 339
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
340
      auto t =
Y
Yu Yang 已提交
341
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
342 343
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
344 345 346 347
    }
  }
}

348
ParallelExecutor::~ParallelExecutor() {
C
chengduoZH 已提交
349
  if (member_->own_local_scope_) {
350
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
M
minqiyang 已提交
351 352 353 354
      Scope *local_scope = member_->local_scopes_[i];
      if (member_->global_scope_->HasKid(local_scope)) {
        member_->global_scope_->DeleteScope(local_scope);
      }
355 356 357 358
    }
  }
}

Y
Yu Yang 已提交
359
}  // namespace framework
Y
Yang Yang 已提交
360
}  // namespace paddle
S
sneaxiy 已提交
361 362 363 364 365 366 367 368

USE_PASS(graph_viz_pass);
USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif