parallel_executor.cc 8.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
22
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
23
#endif
Y
Yang Yang 已提交
24

Y
Yu Yang 已提交
25 26
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
27
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
28

Y
Yang Yang 已提交
29
namespace paddle {
Y
Yu Yang 已提交
30 31
namespace framework {

Y
Yu Yang 已提交
32 33 34
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
35
      : places_(places) {}
Y
Yu Yang 已提交
36 37 38 39

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
40
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
41

Y
Yu Yang 已提交
42
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
43
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
44
#endif
45 46

  std::vector<std::tuple<std::string, proto::VarType::Type, bool>> var_types_;
47
  bool own_local_scope;
Y
Yu Yang 已提交
48 49
};

50 51 52 53
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
54
ParallelExecutor::ParallelExecutor(
55 56
    size_t num_threads, bool use_event,
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
57
    const std::unordered_set<std::string> &params,
58 59
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
Yu Yang 已提交
60
    Scope *scope, const std::vector<Scope *> &local_scopes, bool allow_op_delay,
T
typhoonzero 已提交
61
    bool use_default_grad_scale, size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
62
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
63
  member_->global_scope_ = scope;
Y
Yu Yang 已提交
64

65
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
66
  // Create local scopes
67
  if (local_scopes.empty()) {
68
    member_->own_local_scope = true;
Y
Yu Yang 已提交
69 70
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
71
      member_->local_scopes_.emplace_back(&scope->NewScope());
72 73
    }
  } else {
74
    member_->own_local_scope = false;
75 76
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
77
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
78
    }
Y
Yu Yang 已提交
79 80
  }

Y
Yu Yang 已提交
81 82
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
T
typhoonzero 已提交
83
  auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
T
typhoonzero 已提交
84 85 86 87 88 89
  ncclUniqueId *nccl_id = nullptr;
  if (nccl_id_var != nullptr) {
    nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
  }
  member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
      member_->places_, nccl_id, num_trainers, trainer_id));
Y
Yu Yang 已提交
90
#endif
91 92 93
  if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 &&
      local_scopes.empty()) {  // Is CUDA
    BCastParamsToGPUs(bcast_vars);
Y
Yu Yang 已提交
94
  }
Y
Yu Yang 已提交
95
// Startup Program has been run. All local scopes has correct parameters.
Y
Yu Yang 已提交
96

Y
Yu Yang 已提交
97 98 99
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
100 101
  details::MultiDevSSAGraphBuilder builder(
      member_->places_, loss_var_name, params, member_->local_scopes_,
102
      member_->nccl_ctxs_.get(), use_default_grad_scale);
Y
Yu Yang 已提交
103 104
#else
  details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
Y
Yu Yang 已提交
105
                                           params, member_->local_scopes_,
106
                                           use_default_grad_scale);
Y
Yu Yang 已提交
107
#endif
Y
Yu Yang 已提交
108
  auto graph = builder.Build(main_program);
Y
Yu Yang 已提交
109

Y
Yu Yang 已提交
110
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
111 112
      num_threads, use_event, member_->local_scopes_, places, std::move(graph),
      allow_op_delay));
Y
Yu Yang 已提交
113

Y
Yu Yang 已提交
114
  // Step 3. Create vars in each scope;
115 116 117
  for (auto *var : main_program.Block(0).AllVars()) {
    member_->var_types_.emplace_back(var->Name(), var->GetType(),
                                     var->Persistable());
Y
Yu Yang 已提交
118
  }
Y
Yu Yang 已提交
119 120 121
}

void ParallelExecutor::BCastParamsToGPUs(
122
    const std::unordered_set<std::string> &vars) const {
Y
Yu Yang 已提交
123
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
124
  auto *main_scope = member_->local_scopes_[0];
Y
Yu Yang 已提交
125

126 127
  for (auto &var : vars) {
    auto *main_var = main_scope->FindVar(var);
J
JiayiFeng 已提交
128
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      platform::NCCLGroupGuard guard;
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
        if (i == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
144
          auto local_scope = member_->local_scopes_[i];
145
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
146
          t->Resize(dims);
147
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
148
        }
149 150 151 152 153 154 155 156 157 158 159 160
        auto &nccl_ctx = member_->nccl_ctxs_->at(place);
        platform::dynload::ncclBcast(buffer, numel, data_type, 0,
                                     nccl_ctx.comm_, nccl_ctx.stream());
      }
    } else {
      platform::CPUPlace cpu;
      for (size_t i = 1; i < member_->places_.size(); ++i) {
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
        t->Resize(dims);
        t->mutable_data(cpu, main_tensor.type());
        paddle::framework::TensorCopy(main_tensor, cpu, t);
Y
Yu Yang 已提交
161
      }
Y
Stash  
Yu Yang 已提交
162
    }
Y
Yu Yang 已提交
163
    member_->nccl_ctxs_->WaitAll();
Y
Stash  
Yu Yang 已提交
164
  }
Y
Yu Yang 已提交
165 166 167 168
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
169

Y
Yu Yang 已提交
170 171
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
172
  platform::RecordBlock b(0);
173
  // Create local scopes.
Y
Yu Yang 已提交
174 175 176
  for (auto it = member_->local_scopes_.rbegin();
       it != member_->local_scopes_.rend(); ++it) {
    auto &scope = *it;
177 178 179 180 181 182 183 184 185 186 187 188 189
    Scope &local_scope = scope->NewScope();
    *scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>() =
        &local_scope;

    for (auto &name_type_pair : member_->var_types_) {
      if (scope->FindVar(std::get<0>(name_type_pair)) != nullptr) {
        continue;
      }

      if (std::get<2>(name_type_pair)) {  // Persistable
        InitializeVariable(scope->Var(std::get<0>(name_type_pair)),
                           std::get<1>(name_type_pair));
      } else {
Y
update  
Yu Yang 已提交
190
        InitializeVariable(local_scope.Var(std::get<0>(name_type_pair)),
191 192 193 194 195
                           std::get<1>(name_type_pair));
      }
    }
  }

Y
Yu Yang 已提交
196 197 198
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
199 200 201 202 203 204 205 206 207 208

  // Wait All computational streams
  for (auto p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  for (auto &scope : member_->local_scopes_) {
    auto &local_scope =
        *scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>();
    scope->DeleteScope(local_scope);
  }
Y
Yu Yang 已提交
209
}
Y
Yu Yang 已提交
210

Y
Yu Yang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
230 231 232 233 234
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
235 236
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
237
      auto t =
Y
Yu Yang 已提交
238
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
239 240
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
241 242 243 244
    }
  }
}

245 246 247 248 249 250 251 252
ParallelExecutor::~ParallelExecutor() {
  if (member_->own_local_scope) {
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
253
}  // namespace framework
Y
Yang Yang 已提交
254
}  // namespace paddle