Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
254d7ff4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
254d7ff4
编写于
3月 16, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor local_scopes
上级
b2c7a9b8
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
28 addition
and
48 deletion
+28
-48
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+28
-48
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
254d7ff4
...
...
@@ -151,11 +151,10 @@ class ParallelExecutorPrivate {
explicit
ParallelExecutorPrivate
(
size_t
num_threads
=
12
)
:
pool_
(
num_threads
)
{}
std
::
unordered_map
<
platform
::
Place
,
Scope
*
,
platform
::
PlaceHash
>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
std
::
vector
<
Scope
*>
local_scopes_
;
#ifdef PADDLE_WITH_CUDA
struct
NCCLContext
{
std
::
unique_ptr
<
platform
::
CUDADeviceContext
>
ctx_
;
...
...
@@ -260,10 +259,11 @@ struct NCCLAllReduceOpHandle : public OpHandle {
platform
::
dynload
::
ncclGroupStart
();
for
(
auto
&
p
:
member_
->
places_
)
{
for
(
size_t
i
=
0
;
i
<
member_
->
local_scopes_
.
size
();
++
i
)
{
auto
&
p
=
member_
->
places_
[
i
];
auto
*
s
=
member_
->
local_scopes_
[
i
];
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
Scope
*
s
=
member_
->
local_scopes_
[
p
];
auto
&
lod_tensor
=
s
->
FindVar
(
var_name
)
->
Get
<
framework
::
LoDTensor
>
();
void
*
buffer
=
const_cast
<
void
*>
(
lod_tensor
.
data
<
void
>
());
if
(
dtype
==
-
1
)
{
...
...
@@ -302,8 +302,8 @@ ParallelExecutor::ParallelExecutor(
Executor
exe
(
places
[
0
]);
exe
.
Run
(
startup_program
,
scope
,
0
);
// Create local scopes
for
(
auto
&
place
:
places
)
{
member_
->
local_scopes_
[
place
]
=
&
scope
->
NewScope
(
);
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
member_
->
local_scopes_
.
push_back
(
&
scope
->
NewScope
()
);
}
member_
->
main_place_
=
places
[
0
];
...
...
@@ -320,9 +320,7 @@ ParallelExecutor::ParallelExecutor(
ConstructDependencyGraph
(
params
,
main_program
,
loss_var_name
);
// Step 3. Create vars in each scope;
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
auto
*
scope
=
pair
.
second
;
for
(
auto
*
scope
:
member_
->
local_scopes_
)
{
for
(
auto
*
var
:
main_program
.
Block
(
0
).
AllVars
())
{
if
(
scope
->
FindVar
(
var
->
Name
())
!=
nullptr
)
{
continue
;
...
...
@@ -353,46 +351,44 @@ void ParallelExecutor::ConstructDependencyGraph(
}
}
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
member_
->
ops_
.
emplace_back
(
new
ComputationOpHandle
(
*
op
,
pair
.
second
,
pair
.
first
));
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
auto
&
p
=
member_
->
places_
[
i
];
auto
*
s
=
member_
->
local_scopes_
[
i
];
member_
->
ops_
.
emplace_back
(
new
ComputationOpHandle
(
*
op
,
s
,
p
));
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
op_handle
->
dev_ctx_
[
p
air
.
first
]
=
const_cast
<
platform
::
DeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
air
.
first
));
op_handle
->
dev_ctx_
[
p
]
=
const_cast
<
platform
::
DeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
));
auto
var_names
=
op
->
InputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
auto
&
place
=
pair
.
first
;
VarHandle
*
var
=
GetVarHandle
(
each_var_name
,
place
);
VarHandle
*
var
=
GetVarHandle
(
each_var_name
,
p
);
op_handle
->
inputs_
.
emplace_back
(
var
);
var
->
pending_ops_
.
emplace_back
(
op_handle
);
}
var_names
=
op
->
OutputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
auto
&
place
=
pair
.
first
;
GenerateVar
(
op_handle
,
each_var_name
,
place
);
GenerateVar
(
op_handle
,
each_var_name
,
p
);
}
if
(
is_forwarding
)
{
if
(
var_names
.
size
()
==
1
&&
var_names
[
0
]
==
loss_var_name
)
{
// Insert ScaleCost OpHandle
member_
->
ops_
.
emplace_back
(
new
ScaleLossGradOpHandle
(
this
->
member_
->
local_scopes_
.
size
(),
pair
.
second
,
pair
.
first
));
this
->
member_
->
local_scopes_
.
size
(),
s
,
p
));
op_handle
=
member_
->
ops_
.
back
().
get
();
op_handle
->
dev_ctx_
[
pair
.
first
]
=
member_
->
CommunicationDevCtx
(
pair
.
first
);
op_handle
->
dev_ctx_
[
p
]
=
member_
->
CommunicationDevCtx
(
p
);
auto
&
place
=
pair
.
first
;
// FIXME: Currently ScaleLossGradOp only use device_count as scale
// factor. So it does not depend on any other operators.
// VarHandle *loss = GetVarHandle(loss_var_name, place);
// loss->pending_ops_.emplace_back(op_handle);
// op_handle->inputs_.emplace_back(loss);
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
p
lace
);
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
p
);
change_forward
=
true
;
LOG
(
INFO
)
<<
"Scale Loss "
<<
op_handle
->
DebugString
();
}
...
...
@@ -411,9 +407,9 @@ void ParallelExecutor::ConstructDependencyGraph(
member_
->
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
(
member_
));
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
auto
&
p
lace
=
pair
.
first
;
auto
&
vars
=
member_
->
vars_
[
p
lace
][
og
];
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
auto
&
p
=
member_
->
places_
[
i
]
;
auto
&
vars
=
member_
->
vars_
[
p
][
og
];
if
(
vars
.
empty
())
{
// This device has no data. continue.
continue
;
...
...
@@ -422,16 +418,13 @@ void ParallelExecutor::ConstructDependencyGraph(
op_handle
->
inputs_
.
emplace_back
(
prev_grad
);
prev_grad
->
pending_ops_
.
emplace_back
(
op_handle
);
auto
&
var
=
vars
[
vars
.
size
()];
var
.
place_
=
p
lace
;
var
.
place_
=
p
;
var
.
generated_op_
=
op_handle
;
var
.
name_
=
og
;
var
.
version_
=
vars
.
size
()
-
1
;
op_handle
->
outputs_
.
emplace_back
(
&
var
);
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
op_handle
->
dev_ctx_
[
pair
.
first
]
=
member_
->
CommunicationDevCtx
(
pair
.
first
);
}
op_handle
->
dev_ctx_
[
p
]
=
member_
->
CommunicationDevCtx
(
p
);
}
}
}
...
...
@@ -529,7 +522,7 @@ VarHandle *ParallelExecutor::GetVarHandle(const std::string &each_var_name,
void
ParallelExecutor
::
BCastParamsToGPUs
(
const
ProgramDesc
&
startup_program
)
const
{
#ifdef PADDLE_WITH_CUDA
auto
*
main_scope
=
member_
->
local_scopes_
[
member_
->
main_place_
];
auto
*
main_scope
=
member_
->
local_scopes_
[
0
];
for
(
auto
*
var_desc
:
startup_program
.
Block
(
0
).
AllVars
())
{
if
(
var_desc
->
GetType
()
==
proto
::
VarType
::
LOD_TENSOR
)
{
...
...
@@ -547,7 +540,7 @@ void ParallelExecutor::BCastParamsToGPUs(
if
(
i
==
0
)
{
buffer
=
const_cast
<
void
*>
(
main_tensor
.
data
<
void
>
());
}
else
{
auto
local_scope
=
member_
->
local_scopes_
[
place
];
auto
local_scope
=
member_
->
local_scopes_
[
i
];
auto
*
t
=
local_scope
->
Var
(
var_desc
->
Name
())
->
GetMutable
<
LoDTensor
>
();
t
->
Resize
(
dims
);
buffer
=
t
->
mutable_data
(
place
,
main_tensor
.
type
());
...
...
@@ -560,18 +553,6 @@ void ParallelExecutor::BCastParamsToGPUs(
platform
::
dynload
::
ncclGroupEnd
();
}
}
// Debug code, bias should be 1.0f.
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
member_
->
GetNCCLCtx
(
pair
.
first
).
ctx_
->
Wait
();
auto
&
b
=
pair
.
second
->
FindVar
(
"fc_0.b_0"
)
->
Get
<
framework
::
LoDTensor
>
();
framework
::
LoDTensor
cpu
;
framework
::
TensorCopy
(
b
,
platform
::
CPUPlace
(),
&
cpu
);
platform
::
DeviceContextPool
::
Instance
().
Get
(
b
.
place
())
->
Wait
();
LOG
(
INFO
)
<<
*
cpu
.
data
<
float
>
();
}
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
...
...
@@ -579,8 +560,7 @@ void ParallelExecutor::BCastParamsToGPUs(
void
ParallelExecutor
::
BuildNCCLCommunicator
()
const
{
#ifdef PADDLE_WITH_CUDA
for
(
auto
&
place_pair
:
member_
->
local_scopes_
)
{
auto
place
=
place_pair
.
first
;
for
(
auto
&
place
:
member_
->
places_
)
{
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
).
device
;
member_
->
communication_streams_
.
emplace
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录