parallel_executor.cc 13.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
X
Xin Pan 已提交
23

Y
Yu Yang 已提交
24
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
25
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
26
#endif
Y
Yang Yang 已提交
27

Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
X
Xin Pan 已提交
29 30
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
Y
yuyang18 已提交
31
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yang Yang 已提交
35
namespace paddle {
Y
Yu Yang 已提交
36 37
namespace framework {

X
Xin Pan 已提交
38 39 40 41
std::unique_ptr<ir::Graph> ApplyParallelExecutorPass(
    const ProgramDesc &main_program, const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &param_names,
M
minqiyang 已提交
42 43
    const std::vector<std::shared_ptr<Scope>> &local_scopes,
    const bool use_cuda,
X
Xin Pan 已提交
44 45 46 47 48
#ifdef PADDLE_WITH_CUDA
    const BuildStrategy &strategy, platform::NCCLContextMap *nccl_ctxs) {
#else
    const BuildStrategy &strategy) {
#endif
X
Xin Pan 已提交
49
  // Convert the program to graph.
X
Xin Pan 已提交
50
  std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
X
Xin Pan 已提交
51 52

  // Apply a graph viz pass to record a graph.
X
Xin Pan 已提交
53 54 55 56 57 58 59 60
  if (!strategy.debug_graphviz_path_.empty()) {
    auto viz_pass = ir::PassRegistry::Instance().Get("graph_viz_pass");
    const std::string graph_path = string::Sprintf(
        "%s%s", strategy.debug_graphviz_path_.c_str(), "_original_graph");
    viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
    graph = viz_pass->Apply(std::move(graph));
  }

X
Xin Pan 已提交
61
  // Convert graph to run on multi-devices.
X
Xin Pan 已提交
62 63 64 65 66 67 68
  auto multi_devices_pass =
      ir::PassRegistry::Instance().Get("multi_devices_pass");
  multi_devices_pass->SetNotOwned<const std::vector<platform::Place>>("places",
                                                                      &places);
  multi_devices_pass->SetNotOwned<const std::string>("loss_var_name",
                                                     &loss_var_name);
  multi_devices_pass->SetNotOwned<const std::unordered_set<std::string>>(
X
Xin Pan 已提交
69
      "params", &param_names);
M
minqiyang 已提交
70 71
  multi_devices_pass->SetNotOwned<const std::vector<std::shared_ptr<Scope>>>(
      "local_scopes", &local_scopes);
X
Xin Pan 已提交
72
  multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy", &strategy);
X
Xin Pan 已提交
73 74 75

#ifdef PADDLE_WITH_CUDA
  platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
X
Xin Pan 已提交
76
  multi_devices_pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
X
Xin Pan 已提交
77
#endif
X
Xin Pan 已提交
78
  graph = multi_devices_pass->Apply(std::move(graph));
X
Xin Pan 已提交
79

X
Xin Pan 已提交
80
  // Apply a graph print pass to record a graph with device info.
X
Xin Pan 已提交
81
  if (!strategy.debug_graphviz_path_.empty()) {
X
Xin Pan 已提交
82 83 84
    auto multi_devices_print_pass =
        ir::PassRegistry::Instance().Get("multi_devices_print_pass");
    multi_devices_print_pass->SetNotOwned<const std::string>(
X
Xin Pan 已提交
85
        "debug_graphviz_path", &strategy.debug_graphviz_path_);
X
Xin Pan 已提交
86
    multi_devices_print_pass->Set<details::GraphvizSSAGraphPrinter>(
X
Xin Pan 已提交
87
        "graph_printer", new details::GraphvizSSAGraphPrinter);
X
Xin Pan 已提交
88
    graph = multi_devices_print_pass->Apply(std::move(graph));
X
Xin Pan 已提交
89 90
  }

X
Xin Pan 已提交
91
  // Verify that the graph is correct for multi-device executor.
X
Xin Pan 已提交
92 93 94
  auto multi_devices_check_pass =
      ir::PassRegistry::Instance().Get("multi_devices_check_pass");
  graph = multi_devices_check_pass->Apply(std::move(graph));
X
Xin Pan 已提交
95 96 97
  return graph;
}

Y
Yu Yang 已提交
98 99 100
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
101
      : places_(places) {}
Y
Yu Yang 已提交
102 103

  std::vector<platform::Place> places_;
M
minqiyang 已提交
104 105
  std::vector<std::shared_ptr<Scope>> local_scopes_;
  std::shared_ptr<Scope> global_scope_;
Y
Yu Yang 已提交
106
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
107

Y
Yu Yang 已提交
108
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
109
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
110
#endif
C
chengduoZH 已提交
111 112
  bool own_local_scope_;
  bool use_cuda_;
113
  bool use_all_reduce_;
Y
Yu Yang 已提交
114 115
};

M
minqiyang 已提交
116
std::vector<std::shared_ptr<Scope>> &ParallelExecutor::GetLocalScopes() {
117 118 119
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
120
ParallelExecutor::ParallelExecutor(
121
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
122
    const std::unordered_set<std::string> &params,
123 124
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
M
minqiyang 已提交
125 126
    const std::shared_ptr<Scope> &scope,
    const std::vector<std::shared_ptr<Scope>> &local_scopes,
127
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
128
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
129
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
130
  member_->global_scope_ = scope;
131
  member_->use_cuda_ = exec_strategy.use_cuda_;
132 133 134 135 136 137 138 139
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
140

141
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
142
  // Create local scopes
143
  if (local_scopes.empty()) {
C
chengduoZH 已提交
144
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
145 146
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
M
minqiyang 已提交
147
      member_->local_scopes_.emplace_back(scope->NewSharedScope());
148 149
    }
  } else {
C
chengduoZH 已提交
150
    member_->own_local_scope_ = false;
151 152
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
M
minqiyang 已提交
153
      member_->local_scopes_.emplace_back(local_scopes[i]->NewSharedScope());
154
    }
Y
Yu Yang 已提交
155 156
  }

C
chengduoZH 已提交
157
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
158 159
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
160 161 162 163 164 165 166 167 168
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
169
#endif
C
chengduoZH 已提交
170 171 172
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
173
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
174
  }
Y
yuyang18 已提交
175 176 177 178 179 180 181 182 183 184
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
185

X
Xin Pan 已提交
186 187
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
Y
yuyang18 已提交
188
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
189 190 191 192
  std::unique_ptr<ir::Graph> graph = ApplyParallelExecutorPass(
      main_program, member_->places_, loss_var_name, params,
      member_->local_scopes_, member_->use_cuda_, build_strategy,
      member_->nccl_ctxs_.get());
C
chengduoZH 已提交
193
#else
X
Xin Pan 已提交
194 195 196
  std::unique_ptr<ir::Graph> graph = ApplyParallelExecutorPass(
      main_program, member_->places_, loss_var_name, params,
      member_->local_scopes_, member_->use_cuda_, build_strategy);
Y
Yu Yang 已提交
197
#endif
X
Xin Pan 已提交
198

Y
yuyang18 已提交
199 200 201 202 203 204 205 206
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
  }

Y
yuyang18 已提交
207 208 209
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
210 211
}

Y
Yancey1989 已提交
212
void ParallelExecutor::BCastParamsToDevices(
213
    const std::unordered_set<std::string> &vars) const {
214
  // the initializing bcast, all vars would be bcast from device(0),
Y
yi.wu 已提交
215
  // otherwise
216
  // bcast from the specified device.
X
Xin Pan 已提交
217
  bool initializing = member_->executor_ ? false : true;
218
  for (auto &var : vars) {
X
Xin Pan 已提交
219 220 221 222
    int var_dev_id = -1;
    if (member_->executor_) {
      auto &sharded_var_device =
          member_->executor_->Graph().Get<details::ShardedVarDevice>(
X
Xin Pan 已提交
223
              details::kShardedVarDevice);
X
Xin Pan 已提交
224 225 226 227 228
      if (sharded_var_device.find(var) != sharded_var_device.end()) {
        var_dev_id = sharded_var_device.at(var);
      }
    }

Y
yi.wu 已提交
229
    if (!initializing && var_dev_id == -1) continue;
230 231

    framework::Variable *main_var = nullptr;
Y
yi.wu 已提交
232
    if (initializing) {
233 234 235 236 237
      main_var = member_->local_scopes_[0]->FindVar(var);
    } else {
      main_var = member_->local_scopes_[var_dev_id]->FindVar(var);
    }

J
JiayiFeng 已提交
238
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
239 240 241 242 243 244
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
245
#ifdef PADDLE_WITH_CUDA
246
      std::vector<void *> buffers;
247 248 249 250 251
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
252

Y
yi.wu 已提交
253
        if ((initializing && i == 0) ||
Y
update  
yi.wu 已提交
254
            (!initializing && static_cast<int>(i) == var_dev_id)) {
255 256
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
257
          auto local_scope = member_->local_scopes_[i];
258
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
259
          t->Resize(dims);
260
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
261
        }
262
        buffers.push_back(buffer);
263
      }
264

265 266 267 268 269 270
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
Y
yi.wu 已提交
271 272 273 274
          if (initializing) {
            platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                         nccl_ctx.comm_, nccl_ctx.stream());
          } else {
Y
update  
yi.wu 已提交
275
            if (var_dev_id >= 0) {
Y
yi.wu 已提交
276 277 278 279 280
              platform::dynload::ncclBcast(buffers[i], numel, data_type,
                                           var_dev_id, nccl_ctx.comm_,
                                           nccl_ctx.stream());
            }
          }
281
        }
282
        member_->nccl_ctxs_->WaitAll();
283
      }
284

C
chengduoZH 已提交
285 286 287
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
288 289
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
290 291 292 293 294
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        if ((initializing && i == 0) ||
            (!initializing && static_cast<int>(i) == var_dev_id))
          continue;

295 296
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
297 298 299 300

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
301 302 303 304 305 306
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
307
      }
Y
Stash  
Yu Yang 已提交
308 309
    }
  }
Y
Yu Yang 已提交
310
}
Y
Yu Yang 已提交
311

Y
Yu Yang 已提交
312 313
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
314
  platform::RecordBlock b(0);
Y
Yu Yang 已提交
315 316 317
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
318
}
Y
Yu Yang 已提交
319

Y
Yu Yang 已提交
320 321 322 323 324 325
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
M
minqiyang 已提交
326
    auto &scope = member_->local_scopes_[i];
Y
Yu Yang 已提交
327 328 329 330 331 332 333 334 335 336 337 338
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
339 340 341 342 343
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
344 345
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
346
      auto t =
Y
Yu Yang 已提交
347
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
348 349
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
350 351 352 353
    }
  }
}

354
ParallelExecutor::~ParallelExecutor() {
C
chengduoZH 已提交
355
  if (member_->own_local_scope_) {
M
minqiyang 已提交
356 357
    std::vector<Scope *> local_scopes_ptrs;
    local_scopes_ptrs.reserve(member_->local_scopes_.size());
358
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
M
minqiyang 已提交
359 360 361 362 363 364
      local_scopes_ptrs.emplace_back(member_->local_scopes_[i].get());
      member_->local_scopes_[i].reset();
    }

    for (size_t i = 0; i != local_scopes_ptrs.size(); ++i) {
      member_->global_scope_->DeleteScope(local_scopes_ptrs[i]);
365 366 367 368
    }
  }
}

Y
Yu Yang 已提交
369
}  // namespace framework
Y
Yang Yang 已提交
370
}  // namespace paddle
X
Xin Pan 已提交
371 372

USE_PASS(graph_viz_pass);
X
Xin Pan 已提交
373 374 375
USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);