operator.h 15.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
19
#include <memory>
Q
Qiao Longfei 已提交
20
#include <string>
D
dzhwinter 已提交
21
#include <tuple>
Q
Qiao Longfei 已提交
22
#include <unordered_map>
23
#include <utility>
Q
Qiao Longfei 已提交
24 25
#include <vector>

Y
Yu Yang 已提交
26
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
27 28 29 30 31 32
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
X
polish  
Xin Pan 已提交
33
#include "paddle/fluid/framework/operator_kernel_configs.h"
Y
Yi Wang 已提交
34 35 36 37 38
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
39

Q
Qiao Longfei 已提交
40 41
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
42 43 44
namespace paddle {
namespace framework {

45
/// If a variable is a empty variable, that name will be used.
46
constexpr char kEmptyVarName[] = "@EMPTY@";
47 48 49

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
50
constexpr char kTempVarName[] = "@TEMP@";
51 52 53 54

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
55
constexpr char kGradVarSuffix[] = "@GRAD";
56

M
minqiyang 已提交
57 58
constexpr size_t kGradVarSuffixSize = 5U;

59
/// Variables with this suffix are supposed to be filled up with zeros.
60
constexpr char kZeroVarSuffix[] = "@ZERO";
61

C
chengduo 已提交
62 63 64
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
65
// define some kernel priority
66
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
67 68
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

69
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
70 71 72 73 74
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
75 76
}

M
minqiyang 已提交
77
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
78
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
79 80 81 82 83
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
84 85
}

Q
qiaolongfei 已提交
86
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
87 88
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
89

Q
Qiao Longfei 已提交
90
class OperatorBase;
91
class ExecutionContext;
92

X
Xin Pan 已提交
93 94
class RuntimeContext {
 public:
X
Xin Pan 已提交
95 96
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
97

X
Xin Pan 已提交
98 99 100 101
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
102 103 104 105
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
106
/**
X
Xin Pan 已提交
107
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
108 109 110 111 112 113
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
114 115
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
116

Q
Qiao Longfei 已提交
117 118
  virtual ~OperatorBase() {}

119
  /// Executor will call this interface function to Run an op.
120 121
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
122

T
typhoonzero 已提交
123 124 125
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

126 127 128
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
129

130 131
  virtual bool SupportGPU() const { return false; }

132 133
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
134
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
135 136
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
137 138
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
139 140 141
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
142

Y
Yu Yang 已提交
143 144
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
145

146
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
147
  //! Get a input with argument's name described in `op_proto`
148
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
149
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
150
  const std::vector<std::string>& Inputs(const std::string& name) const;
151
  //! Get all inputs variable names
Q
qijun 已提交
152 153
  std::vector<std::string> InputVars() const;

154
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
155
  //! Get a output with argument's name described in `op_proto`
156
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
157 158
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
159
  const std::vector<std::string>& Outputs(const std::string& name) const;
160
  //! Get all outputs variable names
Y
Yu Yang 已提交
161
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
162

163
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
164
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
165 166
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
167

Q
qiaolongfei 已提交
168
 protected:
Q
Qiao Longfei 已提交
169
  std::string type_;
D
dongzhihong 已提交
170
  // NOTE: in case of OpGrad, inputs_ contains:
171
  // I (Inputs)
D
dongzhihong 已提交
172 173
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
174
  VariableNameMap inputs_;
Y
Yu Yang 已提交
175

D
dongzhihong 已提交
176 177
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
178
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
179
  AttributeMap attrs_;
180 181
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
182 183 184 185

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
186 187
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
188 189
};

190 191 192 193 194 195 196 197 198 199 200 201 202
#ifdef PADDLE_WITH_CUDA
using KernelConfig = boost::variant<
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>>;
#else
using KernelConfig = boost::variant<boost::blank>;
#endif

using OpKernelConfigsMap =
    std::unordered_map<OpKernelType, std::vector<KernelConfig>,
                       OpKernelType::Hash>;

203
class ExecutionContext {
Y
Yan Chunwei 已提交
204
 public:
205
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
206
                   const platform::DeviceContext& device_context,
207 208 209 210 211 212 213
                   const RuntimeContext& ctx,
                   std::vector<KernelConfig>* configs)
      : op_(op),
        scope_(scope),
        device_context_(device_context),
        ctx_(ctx),
        kernel_configs_(configs) {}
214

Q
qiaolongfei 已提交
215 216 217 218
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
219
  template <typename T>
Y
Yu Yang 已提交
220 221
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
222 223
  }

224
  bool HasInput(const std::string& name) const;
225

226
  bool HasOutput(const std::string& name) const;
227

Y
Yu Yang 已提交
228
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
229
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
230 231
  }

Y
Yu Yang 已提交
232
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
233
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
234 235
  }

X
Xin Pan 已提交
236
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
237

X
Xin Pan 已提交
238
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
239

240 241
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
242 243 244 245
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
246
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
247 248 249 250 251 252 253 254 255 256 257
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

258 259
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
260
    auto* var = InputVar(name);
261
    return var == nullptr ? nullptr : &var->Get<T>();
262 263 264 265
  }

  template <typename T>
  T* Output(const std::string& name) const {
266
    auto var = OutputVar(name);
267
    return var == nullptr ? nullptr : var->GetMutable<T>();
268 269 270 271
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

302
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
303

Q
QI JUN 已提交
304 305 306 307 308
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

309
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
310
    return device_context_;
Q
qijun 已提交
311
  }
Q
qijun 已提交
312

Q
QI JUN 已提交
313 314 315 316 317 318 319 320
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
321
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
322 323 324
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
325

D
dzhwinter 已提交
326
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
327 328 329 330
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
    auto tmp_allocation_ptr = platform::DeviceTemporaryAllocator::Instance()
                                  .Get<DevContext>(dev_ctx)
                                  .Allocate(product(dim) * sizeof(T));
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

    PADDLE_ENFORCE(
        dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
        "The AllocationPtr must be TemporaryAllocation.");
345
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
346 347 348 349 350 351 352 353 354
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

355 356 357 358 359 360 361 362
  template <typename T>
  T& GetKernelConfig(int idx) const {
    PADDLE_ENFORCE(kernel_configs_ && kernel_configs_->size() > idx,
                   "%s selected kernel doesn't have kernel config %lu <= %d",
                   op_.Type().c_str(), kernel_configs_->size(), idx);
    return *boost::get<std::shared_ptr<T>>(kernel_configs_->at(idx));
  }

363
 private:
364 365
  const OperatorBase& op_;
  const Scope& scope_;
366
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
367
  const RuntimeContext& ctx_;
368
  mutable std::vector<KernelConfig>* kernel_configs_;
Q
Qiao Longfei 已提交
369 370
};

371 372 373 374 375 376 377 378 379 380 381 382 383 384
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
385
class OpKernelBase {
Q
qijun 已提交
386
 public:
Q
qijun 已提交
387
  /**
388
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
389 390
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
391
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
392 393
   */

394
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
395

Y
Yu Yang 已提交
396 397 398 399 400 401 402
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
403 404
};

Y
Yu Yang 已提交
405 406
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
407
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
408
  using OpKernelMap =
Y
yuyang18 已提交
409
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
410

Y
Yu Yang 已提交
411 412
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
413 414
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
415 416 417 418
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
419
  }
Y
Yan Chunwei 已提交
420

421
  bool SupportGPU() const override {
Y
Yu Yang 已提交
422 423 424 425 426
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
427 428
  }

429 430 431
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
432

X
Xin Pan 已提交
433 434
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
435

436
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
437

X
polish  
Xin Pan 已提交
438 439
  std::vector<KernelConfig>* GetKernelConfig(const OpKernelType& key) const;

X
Xin Pan 已提交
440
 protected:
441 442 443
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
444 445

 private:
446
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
447
  // same.
448
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
449
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
450 451 452 453 454 455 456

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
457 458 459 460
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
461 462 463 464

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
465 466 467

 protected:
  mutable OpKernelConfigsMap kernel_configs_map_;
Q
Qiao Longfei 已提交
468 469
};

Y
Yu Yang 已提交
470 471
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
472 473
}  // namespace framework
}  // namespace paddle