operator.h 13.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51 52

/// Variables with this suffix are supposed to be filled up with zeros.
53
constexpr char kZeroVarSuffix[] = "@ZERO";
54

C
chengduo 已提交
55 56 57
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
58
// define some kernel priority
59
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
60 61
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

62 63 64 65
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
66
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
B
baojun-nervana 已提交
67
bool VarIsTensor(const Variable& var);
C
chengduo 已提交
68 69
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
70

Q
Qiao Longfei 已提交
71
class OperatorBase;
72
class ExecutionContext;
73

Q
Qiao Longfei 已提交
74
/**
X
Xin Pan 已提交
75
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
76 77 78 79 80 81
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
82 83
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
84

Q
Qiao Longfei 已提交
85 86
  virtual ~OperatorBase() {}

87
  /// Executor will call this interface function to Run an op.
88 89
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
90

T
typhoonzero 已提交
91 92 93
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

94 95 96
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
97

98 99
  virtual bool SupportGPU() const { return false; }

100 101
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
102
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
103 104 105 106 107 108 109
  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
110

Y
Yu Yang 已提交
111 112
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
113

114
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
115
  //! Get a input with argument's name described in `op_proto`
116
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
117
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
118
  const std::vector<std::string>& Inputs(const std::string& name) const;
119
  //! Get all inputs variable names
Q
qijun 已提交
120 121
  std::vector<std::string> InputVars() const;

122
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
123
  //! Get a output with argument's name described in `op_proto`
124
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
125 126
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
127
  const std::vector<std::string>& Outputs(const std::string& name) const;
128
  //! Get all outputs variable names
Y
Yu Yang 已提交
129
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
130

131
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
132 133
  virtual void RunInferShape(const Scope& scope,
                             const platform::Place& place) const {}
134

Q
qiaolongfei 已提交
135
 protected:
Q
Qiao Longfei 已提交
136
  std::string type_;
D
dongzhihong 已提交
137
  // NOTE: in case of OpGrad, inputs_ contains:
138
  // I (Inputs)
D
dongzhihong 已提交
139 140
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
141
  VariableNameMap inputs_;
Y
Yu Yang 已提交
142

D
dongzhihong 已提交
143 144
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
145
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
146
  AttributeMap attrs_;
147 148
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
149 150 151 152

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
153 154
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
155 156
};

157
class ExecutionContext {
Y
Yan Chunwei 已提交
158
 public:
159 160 161
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
162

Q
qiaolongfei 已提交
163 164 165 166
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
167
  template <typename T>
Y
Yu Yang 已提交
168 169
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
170 171
  }

172
  bool HasInput(const std::string& name) const;
173

174
  bool HasOutput(const std::string& name) const;
175

Y
Yu Yang 已提交
176
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
177
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
178 179
  }

Y
Yu Yang 已提交
180
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
181
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
182 183
  }

184
  const Variable* InputVar(const std::string& name) const {
185
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
186
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
187 188
  }

189
  Variable* OutputVar(const std::string& name) const {
190
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
191
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
192 193
  }

194 195
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
196 197
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
198
    res.reserve(names.size());
199 200
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
201 202
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
203
                   });
Y
Yan Chunwei 已提交
204 205 206
    return res;
  }

207
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
208
    auto names = op_.Outputs(name);
209
    std::vector<Variable*> res;
210
    res.reserve(names.size());
211 212
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
213 214
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
215
                   });
Y
Yan Chunwei 已提交
216 217 218
    return res;
  }

219 220
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
221
    auto* var = InputVar(name);
222
    return var == nullptr ? nullptr : &var->Get<T>();
223 224 225 226
  }

  template <typename T>
  T* Output(const std::string& name) const {
227
    auto var = OutputVar(name);
228
    return var == nullptr ? nullptr : var->GetMutable<T>();
229 230 231 232 233 234 235 236
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
237
                   [&](const std::string& sub_name) -> const T* {
238
                     auto var = scope_.FindVar(sub_name);
239
                     return var == nullptr ? nullptr : &var->Get<T>();
240 241 242 243 244
                   });
    return res;
  }

  template <typename T>
245
  std::vector<T*> MultiOutput(const std::string& name) const {
246
    auto names = op_.Outputs(name);
247
    std::vector<T*> res;
248 249
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
250
                   [&](const std::string& sub_name) -> T* {
251
                     auto var = scope_.FindVar(sub_name);
252
                     return var == nullptr ? nullptr : var->GetMutable<T>();
253 254 255 256
                   });
    return res;
  }

257
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
258

Q
QI JUN 已提交
259 260 261 262 263
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

264
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
265
    return device_context_;
Q
qijun 已提交
266
  }
Q
qijun 已提交
267

Q
QI JUN 已提交
268 269 270 271 272 273 274 275
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
276
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
277 278 279
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
280

D
dzhwinter 已提交
281
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
282 283 284 285
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

286
 private:
287 288
  const OperatorBase& op_;
  const Scope& scope_;
289
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
290 291
};

292 293 294 295 296 297 298 299 300 301 302 303 304 305
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
306
class OpKernelBase {
Q
qijun 已提交
307
 public:
Q
qijun 已提交
308
  /**
309
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
310 311
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
312
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
313 314
   */

315
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
316

Y
Yu Yang 已提交
317 318 319 320 321 322 323
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
324 325
};

Y
Yu Yang 已提交
326 327
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
328
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
329
  using OpKernelMap =
Y
yuyang18 已提交
330
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
331

Y
Yu Yang 已提交
332 333
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
334 335
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
336 337 338 339
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
340
  }
Y
Yan Chunwei 已提交
341

342
  bool SupportGPU() const override {
Y
Yu Yang 已提交
343 344 345 346 347
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
348 349
  }

350 351 352
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
353

B
baojun-nervana 已提交
354 355 356
  void RunInferShape(const Scope& scope,
                     const platform::Place& place) const override;

Q
qiaolongfei 已提交
357
 protected:
358 359 360 361
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
362 363

 private:
364
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
365
  // same.
366
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
367
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
382 383
};

Y
Yu Yang 已提交
384 385
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
386 387
}  // namespace framework
}  // namespace paddle