operator.h 13.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51 52

/// Variables with this suffix are supposed to be filled up with zeros.
53
constexpr char kZeroVarSuffix[] = "@ZERO";
54

C
chengduo 已提交
55 56 57
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
58
// define some kernel priority
59
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
60 61
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

62 63 64 65
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
66
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
67 68
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
69

Q
Qiao Longfei 已提交
70
class OperatorBase;
71
class ExecutionContext;
72

Q
Qiao Longfei 已提交
73
/**
X
Xin Pan 已提交
74
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
75 76 77 78 79 80
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
81 82
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
83

Q
Qiao Longfei 已提交
84 85
  virtual ~OperatorBase() {}

86
  /// Executor will call this interface function to Run an op.
87 88
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
89

T
typhoonzero 已提交
90 91 92
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

93 94 95
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
96

97 98
  virtual bool SupportGPU() const { return false; }

99 100
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
101
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
102 103 104 105 106 107 108
  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
109

Y
Yu Yang 已提交
110 111
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
112

113
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
114
  //! Get a input with argument's name described in `op_proto`
115
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
116
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
117
  const std::vector<std::string>& Inputs(const std::string& name) const;
118
  //! Get all inputs variable names
Q
qijun 已提交
119 120
  std::vector<std::string> InputVars() const;

121
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
122
  //! Get a output with argument's name described in `op_proto`
123
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
124 125
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
126
  const std::vector<std::string>& Outputs(const std::string& name) const;
127
  //! Get all outputs variable names
Y
Yu Yang 已提交
128
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
129

130
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
131 132
  virtual void RuntimeInferShape(const Scope& scope,
                                 const platform::Place& place) const {}
133

Q
qiaolongfei 已提交
134
 protected:
Q
Qiao Longfei 已提交
135
  std::string type_;
D
dongzhihong 已提交
136
  // NOTE: in case of OpGrad, inputs_ contains:
137
  // I (Inputs)
D
dongzhihong 已提交
138 139
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
140
  VariableNameMap inputs_;
Y
Yu Yang 已提交
141

D
dongzhihong 已提交
142 143
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
144
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
145
  AttributeMap attrs_;
146 147
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
148 149 150 151

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
152 153
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
154 155
};

156
class ExecutionContext {
Y
Yan Chunwei 已提交
157
 public:
158 159 160
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
161

Q
qiaolongfei 已提交
162 163 164 165
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
166
  template <typename T>
Y
Yu Yang 已提交
167 168
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
169 170
  }

171
  bool HasInput(const std::string& name) const;
172

173
  bool HasOutput(const std::string& name) const;
174

Y
Yu Yang 已提交
175
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
176
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
177 178
  }

Y
Yu Yang 已提交
179
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
180
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
181 182
  }

183
  const Variable* InputVar(const std::string& name) const {
184
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
185
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
186 187
  }

188
  Variable* OutputVar(const std::string& name) const {
189
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
190
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
191 192
  }

193 194
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
195 196
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
197
    res.reserve(names.size());
198 199
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
200 201
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
202
                   });
Y
Yan Chunwei 已提交
203 204 205
    return res;
  }

206
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
207
    auto names = op_.Outputs(name);
208
    std::vector<Variable*> res;
209
    res.reserve(names.size());
210 211
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
212 213
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
214
                   });
Y
Yan Chunwei 已提交
215 216 217
    return res;
  }

218 219
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
220
    auto* var = InputVar(name);
221
    return var == nullptr ? nullptr : &var->Get<T>();
222 223 224 225
  }

  template <typename T>
  T* Output(const std::string& name) const {
226
    auto var = OutputVar(name);
227
    return var == nullptr ? nullptr : var->GetMutable<T>();
228 229 230 231 232 233 234 235
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
236
                   [&](const std::string& sub_name) -> const T* {
237
                     auto var = scope_.FindVar(sub_name);
238
                     return var == nullptr ? nullptr : &var->Get<T>();
239 240 241 242 243
                   });
    return res;
  }

  template <typename T>
244
  std::vector<T*> MultiOutput(const std::string& name) const {
245
    auto names = op_.Outputs(name);
246
    std::vector<T*> res;
247 248
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
249
                   [&](const std::string& sub_name) -> T* {
250
                     auto var = scope_.FindVar(sub_name);
251
                     return var == nullptr ? nullptr : var->GetMutable<T>();
252 253 254 255
                   });
    return res;
  }

256
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
257

Q
QI JUN 已提交
258 259 260 261 262
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

263
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
264
    return device_context_;
Q
qijun 已提交
265
  }
Q
qijun 已提交
266

Q
QI JUN 已提交
267 268 269 270 271 272 273 274
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
275
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
276 277 278
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
279

D
dzhwinter 已提交
280
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
281 282 283 284
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

285
 private:
286 287
  const OperatorBase& op_;
  const Scope& scope_;
288
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
289 290
};

291 292 293 294 295 296 297 298 299 300 301 302 303 304
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
305
class OpKernelBase {
Q
qijun 已提交
306
 public:
Q
qijun 已提交
307
  /**
308
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
309 310
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
311
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
312 313
   */

314
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
315

Y
Yu Yang 已提交
316 317 318 319 320 321 322
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
323 324
};

Y
Yu Yang 已提交
325 326
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
327
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
328
  using OpKernelMap =
Y
yuyang18 已提交
329
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
330

Y
Yu Yang 已提交
331 332
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
333 334
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
335 336 337 338
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
339
  }
Y
Yan Chunwei 已提交
340

341
  bool SupportGPU() const override {
Y
Yu Yang 已提交
342 343 344 345 346
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
347 348
  }

349 350 351
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
352

B
baojun-nervana 已提交
353 354
  void RuntimeInferShape(const Scope& scope,
                         const platform::Place& place) const override;
B
baojun-nervana 已提交
355

Q
qiaolongfei 已提交
356
 protected:
357 358 359 360
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
361 362

 private:
363
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
364
  // same.
365
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
366
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
381 382
};

Y
Yu Yang 已提交
383 384
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
385 386
}  // namespace framework
}  // namespace paddle