operator.h 13.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51 52

/// Variables with this suffix are supposed to be filled up with zeros.
53
constexpr char kZeroVarSuffix[] = "@ZERO";
54

C
chengduo 已提交
55 56 57
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
58
// define some kernel priority
59
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
60 61
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

62 63 64 65
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
66
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
67 68
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
69

Q
Qiao Longfei 已提交
70
class OperatorBase;
71
class ExecutionContext;
72

X
Xin Pan 已提交
73 74 75 76 77 78 79 80
class RuntimeContext {
 public:
  RuntimeContext() {}

  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
81
/**
X
Xin Pan 已提交
82
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
83 84 85 86 87 88
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
89 90
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
91

Q
Qiao Longfei 已提交
92 93
  virtual ~OperatorBase() {}

94
  /// Executor will call this interface function to Run an op.
95 96
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
97

T
typhoonzero 已提交
98 99 100
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

101 102 103
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
104

105 106
  virtual bool SupportGPU() const { return false; }

107 108
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
109
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
110 111 112 113 114 115 116
  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
117

Y
Yu Yang 已提交
118 119
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
120

121
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
122
  //! Get a input with argument's name described in `op_proto`
123
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
124
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
125
  const std::vector<std::string>& Inputs(const std::string& name) const;
126
  //! Get all inputs variable names
Q
qijun 已提交
127 128
  std::vector<std::string> InputVars() const;

129
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
130
  //! Get a output with argument's name described in `op_proto`
131
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
132 133
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
134
  const std::vector<std::string>& Outputs(const std::string& name) const;
135
  //! Get all outputs variable names
Y
Yu Yang 已提交
136
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
137

138
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
139
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
140 141
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
142

Q
qiaolongfei 已提交
143
 protected:
Q
Qiao Longfei 已提交
144
  std::string type_;
D
dongzhihong 已提交
145
  // NOTE: in case of OpGrad, inputs_ contains:
146
  // I (Inputs)
D
dongzhihong 已提交
147 148
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
149
  VariableNameMap inputs_;
Y
Yu Yang 已提交
150

D
dongzhihong 已提交
151 152
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
153
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
154
  AttributeMap attrs_;
155 156
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
157 158 159 160

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
161 162
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
163 164
};

165
class ExecutionContext {
Y
Yan Chunwei 已提交
166
 public:
167 168 169
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
170

Q
qiaolongfei 已提交
171 172 173 174
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
175
  template <typename T>
Y
Yu Yang 已提交
176 177
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
178 179
  }

180
  bool HasInput(const std::string& name) const;
181

182
  bool HasOutput(const std::string& name) const;
183

Y
Yu Yang 已提交
184
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
185
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
186 187
  }

Y
Yu Yang 已提交
188
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
189
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
190 191
  }

192
  const Variable* InputVar(const std::string& name) const {
193
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
194
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
195 196
  }

197
  Variable* OutputVar(const std::string& name) const {
198
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
199
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
200 201
  }

202 203
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
204 205
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
206
    res.reserve(names.size());
207 208
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
209 210
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
211
                   });
Y
Yan Chunwei 已提交
212 213 214
    return res;
  }

215
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
216
    auto names = op_.Outputs(name);
217
    std::vector<Variable*> res;
218
    res.reserve(names.size());
219 220
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
221 222
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
223
                   });
Y
Yan Chunwei 已提交
224 225 226
    return res;
  }

227 228
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
229
    auto* var = InputVar(name);
230
    return var == nullptr ? nullptr : &var->Get<T>();
231 232 233 234
  }

  template <typename T>
  T* Output(const std::string& name) const {
235
    auto var = OutputVar(name);
236
    return var == nullptr ? nullptr : var->GetMutable<T>();
237 238 239 240 241 242 243 244
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
245
                   [&](const std::string& sub_name) -> const T* {
246
                     auto var = scope_.FindVar(sub_name);
247
                     return var == nullptr ? nullptr : &var->Get<T>();
248 249 250 251 252
                   });
    return res;
  }

  template <typename T>
253
  std::vector<T*> MultiOutput(const std::string& name) const {
254
    auto names = op_.Outputs(name);
255
    std::vector<T*> res;
256 257
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
258
                   [&](const std::string& sub_name) -> T* {
259
                     auto var = scope_.FindVar(sub_name);
260
                     return var == nullptr ? nullptr : var->GetMutable<T>();
261 262 263 264
                   });
    return res;
  }

265
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
266

Q
QI JUN 已提交
267 268 269 270 271
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

272
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
273
    return device_context_;
Q
qijun 已提交
274
  }
Q
qijun 已提交
275

Q
QI JUN 已提交
276 277 278 279 280 281 282 283
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
284
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
285 286 287
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
288

D
dzhwinter 已提交
289
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
290 291 292 293
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

294
 private:
295 296
  const OperatorBase& op_;
  const Scope& scope_;
297
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
298 299
};

300 301 302 303 304 305 306 307 308 309 310 311 312 313
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
314
class OpKernelBase {
Q
qijun 已提交
315
 public:
Q
qijun 已提交
316
  /**
317
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
318 319
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
320
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
321 322
   */

323
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
324

Y
Yu Yang 已提交
325 326 327 328 329 330 331
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
332 333
};

Y
Yu Yang 已提交
334 335
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
336
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
337
  using OpKernelMap =
Y
yuyang18 已提交
338
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
339

Y
Yu Yang 已提交
340 341
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
342 343
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
344 345 346 347
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
348
  }
Y
Yan Chunwei 已提交
349

350
  bool SupportGPU() const override {
Y
Yu Yang 已提交
351 352 353 354 355
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
356 357
  }

358 359 360
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
361

X
Xin Pan 已提交
362 363
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
364

Q
qiaolongfei 已提交
365
 protected:
366 367 368 369
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
370 371

 private:
372
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
373
  // same.
374
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
375
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
376 377 378 379 380 381 382

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
383 384 385 386
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
387 388 389 390

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
391 392
};

Y
Yu Yang 已提交
393 394
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
395 396
}  // namespace framework
}  // namespace paddle