eval_utils.py 3.3 KB
Newer Older
1 2 3 4
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

5
import os
W
wangguanzhong 已提交
6 7
import sys
import json
W
wangguanzhong 已提交
8
from ppdet.py_op.post_process import get_det_res, get_seg_res
K
Kaipeng Deng 已提交
9 10 11

from .logger import setup_logger
logger = setup_logger(__name__)
12

13

14
def json_eval_results(metric, json_directory=None, dataset=None):
15 16 17 18 19
    """
    cocoapi eval with already exists proposal.json, bbox.json or mask.json
    """
    assert metric == 'COCO'
    from ppdet.utils.coco_eval import cocoapi_eval
20
    anno_file = dataset.get_anno()
21 22
    json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
    if json_directory:
23 24 25
        assert os.path.exists(
            json_directory), "The json directory:{} does not exist".format(
                json_directory)
26 27 28 29 30 31 32 33 34
        for k, v in enumerate(json_file_list):
            json_file_list[k] = os.path.join(str(json_directory), v)

    coco_eval_style = ['proposal', 'bbox', 'segm']
    for i, v_json in enumerate(json_file_list):
        if os.path.exists(v_json):
            cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
        else:
            logger.info("{} not exists!".format(v_json))
F
FDInSky 已提交
35 36


K
Kaipeng Deng 已提交
37
def get_infer_results(outs_res, eval_type, catid):
W
wangguanzhong 已提交
38 39 40
    """
    Get result at the stage of inference.
    The output format is dictionary containing bbox or mask result.
F
FDInSky 已提交
41

W
wangguanzhong 已提交
42 43 44 45 46 47 48
    For example, bbox result is a list and each element contains
    image_id, category_id, bbox and score. 
    """
    if outs_res is None or len(outs_res) == 0:
        raise ValueError(
            'The number of valid detection result if zero. Please use reasonable model and check input data.'
        )
K
Kaipeng Deng 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

    infer_res = {k: [] for k in eval_type}

    for i, outs in enumerate(outs_res):
        im_id = outs['im_id']
        im_shape = outs['im_shape']
        scale_factor = outs['scale_factor']

        if 'bbox' in eval_type:
            infer_res['bbox'] += get_det_res(outs['bbox'], outs['bbox_num'],
                                             im_id, catid)

        if 'mask' in eval_type:
            # mask post process
            infer_res['mask'] += get_seg_res(outs['mask'], outs['bbox_num'],
                                             im_id, catid)
W
wangguanzhong 已提交
65 66 67 68

    return infer_res


K
Kaipeng Deng 已提交
69
def eval_results(res, metric, dataset):
W
wangguanzhong 已提交
70 71 72 73 74 75 76 77 78 79 80 81
    """
    Evalute the inference result
    """
    eval_res = []
    if metric == 'COCO':
        from ppdet.utils.coco_eval import cocoapi_eval

        if 'bbox' in res:
            with open("bbox.json", 'w') as f:
                json.dump(res['bbox'], f)
                logger.info('The bbox result is saved to bbox.json.')

K
Kaipeng Deng 已提交
82 83
            bbox_stats = cocoapi_eval(
                'bbox.json', 'bbox', anno_file=dataset.get_anno())
W
wangguanzhong 已提交
84 85 86 87 88 89
            eval_res.append(bbox_stats)
            sys.stdout.flush()
        if 'mask' in res:
            with open("mask.json", 'w') as f:
                json.dump(res['mask'], f)
                logger.info('The mask result is saved to mask.json.')
F
FDInSky 已提交
90

K
Kaipeng Deng 已提交
91 92
            seg_stats = cocoapi_eval(
                'mask.json', 'segm', anno_file=dataset.get_anno())
W
wangguanzhong 已提交
93 94
            eval_res.append(seg_stats)
            sys.stdout.flush()
K
Kaipeng Deng 已提交
95 96 97 98
    elif metric == 'VOC':
        from ppdet.utils.voc_eval import bbox_eval

        bbox_stats = bbox_eval(res, 21)
W
wangguanzhong 已提交
99 100
    else:
        raise NotImplemented("Only COCO metric is supported now.")
F
FDInSky 已提交
101

W
wangguanzhong 已提交
102
    return eval_res