eval_utils.py 2.7 KB
Newer Older
1 2 3 4
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

5

6
def json_eval_results(metric, json_directory=None, dataset=None):
7 8 9 10 11
    """
    cocoapi eval with already exists proposal.json, bbox.json or mask.json
    """
    assert metric == 'COCO'
    from ppdet.utils.coco_eval import cocoapi_eval
12
    anno_file = dataset.get_anno()
13 14
    json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
    if json_directory:
15 16 17
        assert os.path.exists(
            json_directory), "The json directory:{} does not exist".format(
                json_directory)
18 19 20 21 22 23 24 25 26
        for k, v in enumerate(json_file_list):
            json_file_list[k] = os.path.join(str(json_directory), v)

    coco_eval_style = ['proposal', 'bbox', 'segm']
    for i, v_json in enumerate(json_file_list):
        if os.path.exists(v_json):
            cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
        else:
            logger.info("{} not exists!".format(v_json))
F
FDInSky 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74


def coco_eval_results(outs_res=None,
                      include_mask=False,
                      batch_size=1,
                      dataset=None):
    print("start evaluate bbox using coco api")
    import io
    import six
    import json
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval
    from ppdet.py_op.post_process import get_det_res, get_seg_res
    anno_file = os.path.join(dataset.dataset_dir, dataset.anno_path)
    cocoGt = COCO(anno_file)
    catid = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())}

    if outs_res is not None and len(outs_res) > 0:
        det_res = []
        for outs in outs_res:
            det_res += get_det_res(outs['bbox_nums'], outs['bbox'],
                                   outs['im_id'], outs['im_shape'], catid,
                                   batch_size)

        with io.open("bbox_eval.json", 'w') as outfile:
            encode_func = unicode if six.PY2 else str
            outfile.write(encode_func(json.dumps(det_res)))

        cocoDt = cocoGt.loadRes("bbox_eval.json")
        cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()

    if outs_res is not None and len(outs_res) > 0 and include_mask:
        seg_res = []
        for outs in outs_res:
            seg_res += get_seg_res(outs['bbox_nums'], outs['mask'],
                                   outs['im_id'], catid, batch_size)

        with io.open("mask_eval.json", 'w') as outfile:
            encode_func = unicode if six.PY2 else str
            outfile.write(encode_func(json.dumps(seg_res)))

        cocoSg = cocoGt.loadRes("mask_eval.json")
        cocoEval = COCOeval(cocoGt, cocoSg, 'bbox')
        cocoEval.evaluate()
        cocoEval.accumulate()