README_en.md 35.9 KB
Newer Older
W
wangguanzhong 已提交
1
[简体中文](README_cn.md) | English
2

3 4 5 6 7
<div align="center">
<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/160532560-34cf7a1f-d950-435e-90d2-4b0a679e5119.png" align="middle" width = "800" />
</p>

8
**A High-Efficient Development Toolkit for Object Detection based on [PaddlePaddle](https://github.com/paddlepaddle/paddle)**
9

10 11 12 13 14 15
<p align="center">
    <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleDetection?color=ffa"></a>
    <a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
    <a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleDetection?color=ccf"></a>
16
</p>
17 18
</div>

19 20
<div  align="center">
  <img src="docs/images/ppdet.gif" width="800"/>
21

22
</div>
W
wangguanzhong 已提交
23

24
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Product Update
25

26 27 28 29 30 31 32 33 34 35 36 37
- 🔥 **2022.8.09:Release [YOLO series model zoo](https://github.com/nemonameless/PaddleDetection_YOLOSeries)**
  - Comprehensive coverage of classic and latest models of the YOLO series: Including YOLOv3,Paddle real-time object detection model PP-YOLOE, and frontier detection algorithms YOLOv4, YOLOv5, YOLOX, MT-YOLOv6 and YOLOv7
  - Better model performance:Upgrade based on various YOLO algorithms, shorten training time in 5-8 times and the accuracy is generally improved by 1%-5% mAP. The model compression strategy is used to achieve 30% improvement in speed without precision loss
  - Complete end-to-end development support:End-to-end development pipieline including training, evaluation, inference, model compression and deployment on various hardware. Meanwhile, support flexible algorithnm switch and implement customized development efficiently

- 🔥 **2022.8.01:Release [PP-TinyPose plus](./configs/keypoint/tiny_pose/). The end-to-end precision improves 9.1% AP in dataset
 of fitness and dance scenes**
  - Increase data of sports scenes, and the recognition performance of complex actions is significantly improved, covering actions such as sideways, lying down, jumping, and raising legs
  - Detection model uses PP-PicoDet plus and the precision on COCO dataset is improved by 3.1% mAP
  - The stability of keypoints is enhanced. Implement the filter stabilization method to make the video prediction result more stable and smooth.

- 2022.7.14:Release [pedestrian analysis tool PP-Human v2](./deploy/pipeline)
38 39 40
  - Four major functions: five complicated action recognition with high performance and Flexible, real-time human attribute recognition, visitor flow statistics and high-accuracy multi-camera tracking.
  - High performance algorithm: including pedestrian detection, tracking, attribute recognition which is robust to the number of targets and the variant of background and light.
  - Highly Flexible: providing complete introduction of end-to-end development and optimization strategy, simple command for deployment and compatibility with different input format.
41

42 43 44 45 46
- 2022.3.24:PaddleDetection released[release/2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)  
  - Release high-performanace SOTA object detection model [PP-YOLOE](configs/ppyoloe). It integrates cloud and edge devices and provides S/M/L/X versions. In particular, Verson L has the accuracy as 51.4% on COCO test 2017 dataset, inference speed as 78.1 FPS on a single Test V100. It supports mixed precision training, 33% faster than PP-YOLOv2. Its full range of multi-sized models can meet different hardware arithmetic requirements, and adaptable to server, edge-device GPU and other AI accelerator cards on servers.
  - Release ultra-lightweight SOTA object detection model [PP-PicoDet Plus](configs/picodet) with 2% improvement in accuracy and 63% improvement in CPU inference speed. Add PicoDet-XS model with a 0.7M parameter, providing model sparsification and quantization functions for model acceleration. No specific post processing module is required for all the hardware, simplifying the deployment.  
  - Release the real-time pedestrian analysis tool [PP-Human](deploy/pphuman). It has four major functions: pedestrian tracking, visitor flow statistics, human attribute recognition and falling detection. For falling detection, it is optimized based on real-life data with accurate recognition of various types of falling posture. It can adapt to different environmental background, light and camera angle.
  - Add [YOLOX](configs/yolox) object detection model with nano/tiny/S/M/L/X. X version has the accuracy as 51.8% on COCO  Val2017 dataset.
47

48
- [More releases](https://github.com/PaddlePaddle/PaddleDetection/releases)
49

50
## <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> Brief Introduction
51

52
**PaddleDetection** is an end-to-end object detection development kit based on PaddlePaddle. Providing **over 30 model algorithm** and **over 250 pre-trained models**, it covers object detection, instance segmentation, keypoint detection, multi-object tracking. In particular, PaddleDetection offers **high- performance & light-weight** industrial SOTA models on **servers and mobile** devices, champion solution and cutting-edge algorithm. PaddleDetection provides various data augmentation methods, configurable network components, loss functions and other advanced optimization & deployment schemes. In addition to running through the whole process of data processing, model development, training, compression and deployment, PaddlePaddle also provides rich cases and tutorials to accelerate the industrial application of algorithm.
53

54 55
<div  align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157826886-2e101a71-25a2-42f5-bf5e-30a97be28f46.gif" width="800"/>
56 57 58
</div>


59

60
## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> Features
61

62 63 64 65
- **Rich model library**: PaddleDetection provides over 250 pre-trained models including **object detection, instance segmentation, face recognition, multi-object tracking**. It covers a variety of **global competition champion** schemes.
- **Simple to use**: Modular design, decoupling each network component, easy for developers to build and try various detection models and optimization strategies, quick access to high-performance, customized algorithm.
- **Getting Through End to End**: PaddlePaddle gets through end to end from data augmentation, constructing models, training, compression, depolyment. It also supports multi-architecture, multi-device deployment for **cloud and edge** device.
- **High Performance**: Due to the high performance core, PaddlePaddle has clear advantages in training speed and memory occupation. It also supports FP16 training and multi-machine training.
66

67 68 69
<div  align="center">
  <img src="img width="484" alt="newstructure" src="https://user-images.githubusercontent.com/107399028/177736039-fdf69bfc-ef38-40e6-8746-1e581101e76a.png"" width="800"/>
</div
70

71
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> Exchanges
72

73
- If you have any question or suggestion, please give us your valuable input via [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues)
74

75
  Welcome to join PaddleDetection user groups on QQ, WeChat (scan the QR code, add and reply "D" to the assistant)
76

77
  <div align="center">
78 79
  <img src="https://user-images.githubusercontent.com/22989727/183843004-baebf75f-af7c-4a7c-8130-1497b9a3ec7e.png"  width = "200" />  
  <img src="https://user-images.githubusercontent.com/34162360/177678712-4655747d-4290-4ad9-b7a1-4564a5418ac6.jpg"  width = "200" />  
80 81
  </div>

82
## <img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="20"/> Kit Structure
83

K
Kaipeng Deng 已提交
84
<table align="center">
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
K
Kaipeng Deng 已提交
102
        <ul>
103
        <details><summary><b>Object Detection</b></summary>
104 105 106 107
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
K
Kaipeng Deng 已提交
108
            <li>PSS-Det</li>
109
            <li>RetinaNet</li>
110
            <li>YOLOv3</li>  
K
Kaipeng Deng 已提交
111 112
            <li>PP-YOLOv1/v2</li>
            <li>PP-YOLO-Tiny</li>
F
Feng Ni 已提交
113 114
            <li>PP-YOLOE</li>
            <li>YOLOX</li>
115
            <li>SSD</li>
116
            <li>CenterNet</li>
117 118
            <li>FCOS</li>  
            <li>TTFNet</li>
119 120
            <li>TOOD</li>
            <li>GFL</li>
K
Kaipeng Deng 已提交
121 122 123 124 125
            <li>PP-PicoDet</li>
            <li>DETR</li>
            <li>Deformable DETR</li>
            <li>Swin Transformer</li>
            <li>Sparse RCNN</li>
126 127 128
         </ul></details>
        <details><summary><b>Instance Segmentation</b></summary>
         <ul>
K
Kaipeng Deng 已提交
129
            <li>Mask RCNN</li>
130
            <li>Cascade Mask RCNN</li>
K
Kaipeng Deng 已提交
131
            <li>SOLOv2</li>
132 133
        </ul></details>
        <details><summary><b>Face Detection</b></summary>
K
Kaipeng Deng 已提交
134
        <ul>
K
Kaipeng Deng 已提交
135
            <li>BlazeFace</li>
136 137
        </ul></details>
        <details><summary><b>Multi-Object-Tracking</b></summary>
K
Kaipeng Deng 已提交
138
        <ul>
K
Kaipeng Deng 已提交
139 140
            <li>JDE</li>
            <li>FairMOT</li>
F
Feng Ni 已提交
141
            <li>DeepSORT</li>
142 143 144
            <li>ByteTrack</li>
        </ul></details>
        <details><summary><b>KeyPoint-Detection</b></summary>
K
Kaipeng Deng 已提交
145
        <ul>
K
Kaipeng Deng 已提交
146 147
            <li>HRNet</li>
            <li>HigherHRNet</li>
148 149 150
            <li>Lite-HRNet</li>
            <li>PP-TinyPose</li>
        </ul></details>
K
Kaipeng Deng 已提交
151
      </ul>
152 153
      </td>
      <td>
154
        <details><summary><b>Details</b></summary>
155 156
        <ul>
          <li>ResNet(&vd)</li>
157 158
          <li>Res2Net(&vd)</li>
          <li>CSPResNet</li>
159 160 161
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
162
          <li>Lite-HRNet</li>
163 164 165
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>MobileNetv1/v3</li>  
166
          <li>ShuffleNet</li>
167
          <li>GhostNet</li>
168 169 170 171 172 173 174
          <li>BlazeNet</li>
          <li>DLA</li>
          <li>HardNet</li>
          <li>LCNet</li>  
          <li>ESNet</li>  
          <li>Swin-Transformer</li>
        </ul></details>
175 176
      </td>
      <td>
177
        <details><summary><b>Common</b></summary>
178 179 180 181
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
182 183
            <li>EMA</li>
          </ul> </details>
184
        </ul>
185
        <details><summary><b>KeyPoint</b></summary>
K
Kaipeng Deng 已提交
186 187
          <ul>
            <li>DarkPose</li>
188
          </ul></details>
K
Kaipeng Deng 已提交
189
        </ul>
190
        <details><summary><b>FPN</b></summary>
191 192
          <ul>
            <li>BiFPN</li>
193 194 195
            <li>CSP-PAN</li>
            <li>Custom-PAN</li>
            <li>ES-PAN</li>
196
            <li>HRFPN</li>
197
          </ul> </details>
198
        </ul>  
199
        <details><summary><b>Loss</b></summary>
200 201 202 203
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
204 205 206 207
            <li>Focal Loss</li>
            <li>CT Focal Loss</li>
            <li>VariFocal Loss</li>
          </ul> </details>
208
        </ul>  
209
        <details><summary><b>Post-processing</b></summary>
210 211 212
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
213
          </ul> </details>  
214
        </ul>
215
        <details><summary><b>Speed</b></summary>
216 217 218
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
219
          </ul> </details>  
220 221 222
        </ul>  
      </td>
      <td>
223
        <details><summary><b>Details</b></summary>
224 225
        <ul>
          <li>Resize</li>  
K
Kaipeng Deng 已提交
226
          <li>Lighting</li>  
227 228 229 230 231 232
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
F
Feng Ni 已提交
233
          <li>AugmentHSV</li>
234
          <li>Mosaic</li>
235 236 237
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
K
Kaipeng Deng 已提交
238
          <li>Random Perspective</li>  
239
        </ul> </details>  
240 241 242 243 244 245 246 247
      </td>  
    </tr>

</td>
    </tr>
  </tbody>
</table>

248
## <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> Model Performance
K
Kaipeng Deng 已提交
249

250 251 252 253
<details>
<summary><b> Performance comparison of Cloud models</b></summary>

The comparison between COCO mAP and FPS on Tesla V100 of representative models of each architectures and backbones.
254 255 256

<div align="center">
  <img src="docs/images/fps_map.png" />
257
</div>
258

259
**Clarification:**
260

261 262 263 264 265 266
- `CBResNet` stands for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3%
- `Cascade-Faster-RCNN`stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection models
- `PP-YOLO` reached accuracy as 45.9% on COCO dataset, inference speed as 72.9 FPS on Tesla V100, higher than [YOLOv4]([[2004.10934] YOLOv4: Optimal Speed and Accuracy of Object Detection](https://arxiv.org/abs/2004.10934)) in terms of speed and accuracy
- `PP-YOLO v2`are optimized `PP-YOLO`. It reached accuracy as 49.5% on COCO dataset, inference speed as 68.9 FPS on Tesla V100.
- `PP-YOLOE`are optimized `PP-YOLO v2`. It reached accuracy as 51.4% on COCO dataset, inference speed as 78.1 FPS on Tesla V100
- The models in the figure are available in the[ model library](#模型库)
267

268
</details>
269

270 271
<details>
<summary><b> Performance omparison on mobiles</b></summary>
272

273
The comparison between COCO mAP and FPS on Qualcomm Snapdragon 865 processor of models on mobile devices.
K
Kaipeng Deng 已提交
274 275

<div align="center">
276
  <img src="docs/images/mobile_fps_map.png" width=600/>
K
Kaipeng Deng 已提交
277 278
</div>

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
**Clarification:**

- Tests were conducted on Qualcomm Snapdragon 865 (4 \*A77 + 4 \*A55) batch_size=1, 4 thread, and NCNN inference library, test script see [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
- [PP-PicoDet](configs/picodet) and [PP-YOLO-Tiny](configs/ppyolo) are self-developed models of PaddleDetection, and other models are not tested yet.

</details>

## <img src="https://user-images.githubusercontent.com/48054808/157829890-a535b8a6-631c-4c87-b861-64d4b32b2d6a.png" width="20"/> Model libraries

<details>
<summary><b> 1. General detection</b></summary>

#### PP-YOLOE series Recommended scenarios: Cloud GPU such as Nvidia V100, T4 and edge devices such as Jetson series

| Model      | COCO Accuracy(mAP) | V100 TensorRT FP16 Speed(FPS) | Configuration                                           | Download                                                                                 |
|:---------- |:------------------:|:-----------------------------:|:-------------------------------------------------------:|:----------------------------------------------------------------------------------------:|
| PP-YOLOE-s | 42.7               | 333.3                         | [Link](configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml)     | [Download](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams)      |
| PP-YOLOE-m | 48.6               | 208.3                         | [Link](configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)     | [Download](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams)     |
| PP-YOLOE-l | 50.9               | 149.2                         | [Link](configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) |
| PP-YOLOE-x | 51.9               | 95.2                          | [Link](configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) |

#### PP-PicoDet series Recommended scenarios: Mobile chips and x86 CPU devices, such as ARM CPU(RK3399, Raspberry Pi) and NPU(BITMAIN)

| Model      | COCO Accuracy(mAP) | Snapdragon 865 four-thread speed (ms) | Configuration                                         | Download                                                                              |
|:---------- |:------------------:|:-------------------------------------:|:-----------------------------------------------------:|:-------------------------------------------------------------------------------------:|
| PicoDet-XS | 23.5               | 7.81                                  | [Link](configs/picodet/picodet_xs_320_coco_lcnet.yml) | [Download](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) |
| PicoDet-S  | 29.1               | 9.56                                  | [Link](configs/picodet/picodet_s_320_coco_lcnet.yml)  | [Download](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams)  |
| PicoDet-M  | 34.4               | 17.68                                 | [Link](configs/picodet/picodet_m_320_coco_lcnet.yml)  | [Download](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams)  |
| PicoDet-L  | 36.1               | 25.21                                 | [Link](configs/picodet/picodet_l_320_coco_lcnet.yml)  | [Download](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams)  |

#### Frontier detection algorithm

| Model    | COCO Accuracy(mAP) | V100 TensorRT FP16 speed(FPS) | Configuration                                                                                                  | Download                                                                       |
|:-------- |:------------------:|:-----------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------:|
| YOLOX-l  | 50.1               | 107.5                         | [Link](configs/yolox/yolox_l_300e_coco.yml)                                                                    | [Download](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams)  |
| YOLOv5-l | 48.6               | 136.0                         | [Link](https://github.com/nemonameless/PaddleDetection_YOLOv5/blob/main/configs/yolov5/yolov5_l_300e_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) |

#### Other general purpose models [doc](docs/MODEL_ZOO_cn.md)

</details>

<details>
<summary><b> 2. Instance segmentation</b></summary>

| Model             | Introduction                                             | Recommended Scenarios                         | COCO Accuracy(mAP)               | Configuration                                                           | Download                                                                                              |
|:----------------- |:-------------------------------------------------------- |:--------------------------------------------- |:--------------------------------:|:-----------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|
| Mask RCNN         | Two-stage instance segmentation algorithm                | <div style="width: 50pt">Edge-Cloud end</div> | box AP: 41.4 <br/> mask AP: 37.5 | [Link](configs/mask_rcnn/mask_rcnn_r50_vd_fpn_2x_coco.yml)              | [Download](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams)              |
| Cascade Mask RCNN | Two-stage instance segmentation algorithm                | <div style="width: 50pt">Edge-Cloud end</div> | box AP: 45.7 <br/> mask AP: 39.7 | [Link](configs/mask_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) |
| SOLOv2            | Lightweight single-stage instance segmentation algorithm | <div style="width: 50pt">Edge-Cloud end</div> | mask AP: 38.0                    | [Link](configs/solov2/solov2_r50_fpn_3x_coco.yml)                       | [Download](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_3x_coco.pdparams)                    |

</details>

<details>
<summary><b> 3. Keypoint detection</b></summary>

| Model                | Introduction                                                                                  | Recommended scenarios                         | COCO Accuracy(AP) | Speed                             | Configuration                                             | Download                                                                                    |
|:-------------------- |:--------------------------------------------------------------------------------------------- |:--------------------------------------------- |:-----------------:|:---------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|
| HRNet-w32 + DarkPose | <div style="width: 130pt">Top-down Keypoint detection algorithm<br/>Input size: 384x288</div> | <div style="width: 50pt">Edge-Cloud end</div> | 78.3              | T4 TensorRT FP16 2.96ms           | [Link](configs/keypoint/hrnet/dark_hrnet_w32_384x288.yml) | [Download](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) |
| HRNet-w32 + DarkPose | Top-down Keypoint detection algorithm<br/>Input size: 256x192                                 | Edge-Cloud end                                | 78.0              | T4 TensorRT FP16 1.75ms           | [Link](configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml) | [Download](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) |
| PP-TinyPose          | Light-weight keypoint algorithm<br/>Input size: 256x192                                       | Mobile                                        | 68.8              | Snapdragon 865 four-thread 6.30ms | [Link](configs/keypoint/tiny_pose/tinypose_256x192.yml)   | [Download](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams)    |
| PP-TinyPose          | Light-weight keypoint algorithm<br/>Input size: 128x96                                        | Mobile                                        | 58.1              | Snapdragon 865 four-thread 2.37ms | [Link](configs/keypoint/tiny_pose/tinypose_128x96.yml)    | [Download](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams)     |

#### Other keypoint detection models [doc](configs/keypoint)

</details>

<details>
<summary><b> 4. Multi-object tracking PP-Tracking</b></summary>

| Model     | Introduction                                                  | Recommended scenarios | Accuracy               | Configuration                                                           | Download                                                                                              |
|:--------- |:------------------------------------------------------------- |:--------------------- |:----------------------:|:-----------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|
| DeepSORT  | SDE Multi-object tracking algorithm, independent ReID models  | Edge-Cloud end        | MOT-17 half val:  66.9 | [Link](configs/mot/deepsort/deepsort_jde_yolov3_pcb_pyramid.yml)        | [Download](https://paddledet.bj.bcebos.com/models/mot/deepsort/deepsort_pcb_pyramid_r101.pdparams)    |
| ByteTrack | SDE Multi-object tracking algorithm with detection model only | Edge-Cloud end        | MOT-17 half val:  77.3 | [Link](configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml) | [Download](https://paddledet.bj.bcebos.com/models/mot/deepsort/yolox_x_24e_800x1440_mix_det.pdparams) |
| JDE       | JDE multi-object tracking algorithm multi-task learning       | Edge-Cloud end        | MOT-16 test: 64.6      | [Link](configs/mot/jde/jde_darknet53_30e_1088x608.yml)                  | [Download](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams)            |
| FairMOT   | JDE multi-object tracking algorithm multi-task learning       | Edge-Cloud end        | MOT-16 test: 75.0      | [Link](configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml)              | [Download](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams)            |

#### Other multi-object tracking models [docs](configs/mot)

</details>

<details>
<summary><b> 5. Industrial real-time pedestrain analysis tool-PP Human</b></summary>

| Function \ Model                     | Obejct detection                                                                       | Multi- object tracking                                                                 | Attribute recognition                                                                     | Keypoint detection                                                                        | Action recognition                                                | ReID                                                                   |
|:------------------------------------ |:-------------------------------------------------------------------------------------- |:-------------------------------------------------------------------------------------- |:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------:|:----------------------------------------------------------------------:|
| Pedestrian Detection                 | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                        |                                                                                           |                                                                                           |                                                                   |                                                                        |
| Pedestrian Tracking                  |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           |                                                                                           |                                                                   |                                                                        |
| Attribute Recognition (Image)        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) |                                                                                           |                                                                   |                                                                        |
| Attribute Recognition (Video)        |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           |                                                                                           |                                                                   |                                                                        |
| Falling Detection                    |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) |                                                                        |
| ReID                                 |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           |                                                                                           |                                                                   | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) |
| **Accuracy**                         | mAP 56.3                                                                               | MOTA 72.0                                                                              | mA 94.86                                                                                  | AP 87.1                                                                                   | AP 96.43                                                          | mAP 98.8                                                               |
| **T4 TensorRT FP16 Inference speed** | 28.0ms                                                                                 | 33.1ms                                                                                 | Single person 2ms                                                                         | Single person 2.9ms                                                                       | Single person 2.7ms                                               | Single person 1.5ms                                                    |

</details>

**Click “ ✅ ” to download**

## <img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="20"/>Document tutorials

### Introductory tutorials

- [Installation](docs/tutorials/INSTALL_cn.md)
- [Quick start](docs/tutorials/QUICK_STARTED_cn.md)
- [Data preparation](docs/tutorials/data/README.md)
- [Geting Started on PaddleDetection](docs/tutorials/GETTING_STARTED_cn.md)
- [Customize data training]((docs/tutorials/CustomizeDataTraining.md)
- [FAQ]((docs/tutorials/FAQ)

### Advanced tutorials

- Configuration

  - [RCNN Configuration](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation.md)
  - [PP-YOLO Configuration](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation.md)

- Compression based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)

  - [Pruning/Quantization/Distillation Tutorial](configs/slim)

- [Inference deployment](deploy/README.md)

  - [Export model for inference](deploy/EXPORT_MODEL.md)

  - [Paddle Inference deployment](deploy/README.md)

    - [Inference deployment with Python](deploy/python)
    - [Inference deployment with C++](deploy/cpp)

  - [Paddle-Lite deployment](deploy/lite)

  - [Paddle Serving deployment](deploy/serving)

  - [ONNX model export](deploy/EXPORT_ONNX_MODEL.md)

  - [Inference benchmark](deploy/BENCHMARK_INFER.md)

- Advanced development

  - [Data processing module](docs/advanced_tutorials/READER.md)
  - [New object detection models](docs/advanced_tutorials/MODEL_TECHNICAL.md)
  - Custumization
    - [Object detection](docs/advanced_tutorials/customization/detection.md)
    - [Keypoint detection](docs/advanced_tutorials/customization/keypoint_detection.md)
Z
zhiboniu 已提交
423 424 425
    - [Multiple object tracking](docs/advanced_tutorials/customization/pphuman_mot.md)
    - [Action recognition](docs/advanced_tutorials/customization/pphuman_action.md)
    - [Attribute recognition](docs/advanced_tutorials/customization/pphuman_attribute.md)
426 427 428 429 430 431 432 433 434

### Courses

- **[Theoretical foundation] [Object detection 7-day camp](https://aistudio.baidu.com/aistudio/education/group/info/1617):** Overview of object detection tasks, details of RCNN series object detection algorithm and YOLO series object detection algorithm, PP-YOLO optimization strategy and case sharing, introduction and practice of AnchorFree series algorithm

- **[Industrial application] [AI Fast Track industrial object detection technology and application](https://aistudio.baidu.com/aistudio/education/group/info/23670):** Super object detection algorithms, real-time pedestrian analysis system PP-Human, breakdown and practice of object detection industrial application

- **[Industrial features] 2022.3.26** **[Smart City Industry Seven-Day Class](https://aistudio.baidu.com/aistudio/education/group/info/25620)** : Urban planning, Urban governance, Smart governance service, Traffic management, community governance.

435
### [Industrial tutorial examples](./industrial_tutorial/README.md)
436

437 438
- [Intelligent fitness recognition based on PP-TinyPose Plus](https://aistudio.baidu.com/aistudio/projectdetail/4385813)

439 440 441 442 443 444
- [Road litter detection based on PP-PicoDet Plus](https://aistudio.baidu.com/aistudio/projectdetail/3561097)

- [Communication tower detection based on PP-PicoDet and deployment on Android](https://aistudio.baidu.com/aistudio/projectdetail/3561097)

- [Visitor flow statistics based on FairMOT](https://aistudio.baidu.com/aistudio/projectdetail/2421822)

445
- [More examples](./industrial_tutorial/README.md)
446

447
## <img title="" src="https://user-images.githubusercontent.com/48054808/157836473-1cf451fa-f01f-4148-ba68-b6d06d5da2f9.png" alt="" width="20"> Applications
448

449 450 451 452 453 454 455 456 457 458
- [Fitness app on android mobile](https://github.com/zhiboniu/pose_demo_android)
- [PP-Tracking GUI Visualization Interface](https://github.com/yangyudong2020/PP-Tracking_GUi)

## Recommended third-party tutorials

- [Deployment of PaddleDetection for Windows I ](https://zhuanlan.zhihu.com/p/268657833)
- [Deployment of PaddleDetection for Windows II](https://zhuanlan.zhihu.com/p/280206376)
- [Deployment of PaddleDetection on Jestson Nano](https://zhuanlan.zhihu.com/p/319371293)
- [How to deploy YOLOv3 model on Raspberry Pi for Helmet detection](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/yolov3_for_raspi.md)
- [Use SSD-MobileNetv1 for a project -- From dataset to deployment on Raspberry Pi](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/ssd_mobilenet_v1_for_raspi.md)
459

460
## <img src="https://user-images.githubusercontent.com/48054808/157835981-ef6057b4-6347-4768-8fcc-cd07fcc3d8b0.png" width="20"/> Version updates
461

462
Please refer to the[ Release note ](https://github.com/PaddlePaddle/Paddle/wiki/PaddlePaddle-2.3.0-Release-Note-EN)for more details about the updates
463

464
## <img title="" src="https://user-images.githubusercontent.com/48054808/157835345-f5d24128-abaf-4813-b793-d2e5bdc70e5a.png" alt="" width="20">  License
465

466
PaddlePaddle is provided under the [Apache 2.0 license](LICENSE)
467

468
## <img src="https://user-images.githubusercontent.com/48054808/157835796-08d4ffbc-87d9-4622-89d8-cf11a44260fc.png" width="20"/> Contribute your code
469

470
We appreciate your contributions and your feedback!
471

472 473 474 475 476 477
- Thank [Mandroide](https://github.com/Mandroide) for code cleanup and
- Thank [FL77N](https://github.com/FL77N/) for `Sparse-RCNN`model
- Thank [Chen-Song](https://github.com/Chen-Song) for `Swin Faster-RCNN`model
- Thank [yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) for developing PP-Tracking GUI interface
- Thank Shigure19 for developing PP-TinyPose fitness APP
- Thank [manangoel99](https://github.com/manangoel99) for Wandb visualization methods
478

479
## <img src="https://user-images.githubusercontent.com/48054808/157835276-9aab9d1c-1c46-446b-bdd4-5ab75c5cfa48.png" width="20"/> Quote
480 481 482 483 484 485 486 487 488

```
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```