README_en.md 12.2 KB
Newer Older
1 2 3
English | [简体中文](README_cn.md)


K
Kaipeng Deng 已提交
4
# Product news
W
wangguanzhong 已提交
5

W
wangguanzhong 已提交
6
- 2021.11.03: Release [release/2.3](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.3) version. Release mobile object detection model ⚡[PP-PicoDet](configs/picodet), mobile keypoint detection model ⚡[PP-TinyPose](configs/keypoint/tiny_pose),Real-time tracking system [PP-Tracking](deploy/pptracking). Release object detection models, including [Swin-Transformer](configs/faster_rcnn), [TOOD](configs/tood), [GFL](configs/gfl), release [Sniper](configs/sniper) tiny object detection models and optimized [PP-YOLO-EB](configs/ppyolo) model for EdgeBoard. Release mobile keypoint detection model [Lite HRNet](configs/keypoint).
K
Kaipeng Deng 已提交
7
- 2021.08.10: Release [release/2.2](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.2) version. Release Transformer object detection models, including [DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn). Release [keypoint detection](configs/keypoint) models, including DarkHRNet and model trained on MPII dataset. Release [head-tracking](configs/mot/headtracking21) and [vehicle-tracking](configs/mot/vehicle) multi-object tracking models.
J
JYChen 已提交
8
- 2021.05.20: Release [release/2.1](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.1) version. Release [Keypoint Detection](configs/keypoint), including HigherHRNet and HRNet, [Multi-Object Tracking](configs/mot), including DeepSORT,JDE and FairMOT. Release model compression for PPYOLO series models.Update documents such as [EXPORT ONNX MODEL](deploy/EXPORT_ONNX_MODEL.md).
9 10


11 12
# Introduction

K
Kaipeng Deng 已提交
13
PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle, which implements varied mainstream object detection, instance segmentation, tracking and keypoint detection algorithms in modular designwhich with configurable modules such as network components, data augmentations and losses, and release many kinds SOTA industry practice models, integrates abilities of model compression and cross-platform high-performance deployment, aims to help developers in the whole end-to-end development in a faster and better way.
14

K
Kaipeng Deng 已提交
15
### PaddleDetection provides image processing capabilities such as object detection, instance segmentation, multi-object tracking, keypoint detection and etc.
16

K
Kaipeng Deng 已提交
17 18
<div width="1000" align="center">
  <img src="docs/images/ppdet.gif"/>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
</div>


### Features

- **Rich Models**
PaddleDetection provides rich of models, including **100+ pre-trained models** such as **object detection**, **instance segmentation**, **face detection** etc. It covers a variety of **global competition champion** schemes.

- **Highly Flexible:**
Components are designed to be modular. Model architectures, as well as data preprocess pipelines and optimization strategies, can be easily customized with simple configuration changes.

- **Production Ready:**
From data augmentation, constructing models, training, compression, depolyment, get through end to end, and complete support for multi-architecture, multi-device deployment for **cloud and edge device**.

- **High Performance:**
Based on the high performance core of PaddlePaddle, advantages of training speed and memory occupation are obvious. FP16 training and multi-machine training are supported as well.

#### Overview of Kit Structures

K
Kaipeng Deng 已提交
38
<table align="center">
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
K
Kaipeng Deng 已提交
56 57
        <ul>
          <li><b>Object Detection</b></li>
58 59 60 61 62 63
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
            <li>Libra RCNN</li>
            <li>Hybrid Task RCNN</li>
K
Kaipeng Deng 已提交
64
            <li>PSS-Det</li>
65 66 67
            <li>RetinaNet</li>
            <li>YOLOv3</li>
            <li>YOLOv4</li>  
K
Kaipeng Deng 已提交
68 69
            <li>PP-YOLOv1/v2</li>
            <li>PP-YOLO-Tiny</li>
70 71 72 73
            <li>SSD</li>
            <li>CornerNet-Squeeze</li>
            <li>FCOS</li>  
            <li>TTFNet</li>
K
Kaipeng Deng 已提交
74 75 76 77 78
            <li>PP-PicoDet</li>
            <li>DETR</li>
            <li>Deformable DETR</li>
            <li>Swin Transformer</li>
            <li>Sparse RCNN</li>
79
        </ul>
K
Kaipeng Deng 已提交
80
        <li><b>Instance Segmentation</b></li>
81
        <ul>
K
Kaipeng Deng 已提交
82 83
            <li>Mask RCNN</li>
            <li>SOLOv2</li>
84
        </ul>
K
Kaipeng Deng 已提交
85
        <li><b>Face Detection</b></li>
K
Kaipeng Deng 已提交
86
        <ul>
K
Kaipeng Deng 已提交
87 88 89
            <li>FaceBoxes</li>
            <li>BlazeFace</li>
            <li>BlazeFace-NAS</li>
K
Kaipeng Deng 已提交
90
        </ul>
K
Kaipeng Deng 已提交
91
        <li><b>Multi-Object-Tracking</b></li>
K
Kaipeng Deng 已提交
92
        <ul>
K
Kaipeng Deng 已提交
93 94 95
            <li>JDE</li>
            <li>FairMOT</li>
            <li>DeepSort</li>
K
Kaipeng Deng 已提交
96
        </ul>
K
Kaipeng Deng 已提交
97
        <li><b>KeyPoint-Detection</b></li>
K
Kaipeng Deng 已提交
98
        <ul>
K
Kaipeng Deng 已提交
99 100
            <li>HRNet</li>
            <li>HigherHRNet</li>
K
Kaipeng Deng 已提交
101
        </ul>
K
Kaipeng Deng 已提交
102
      </ul>
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
      </td>
      <td>
        <ul>
          <li>ResNet(&vd)</li>
          <li>ResNeXt(&vd)</li>
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
          <li>Hourglass</li>
          <li>CBNet</li>
          <li>GCNet</li>
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>VGG</li>
          <li>MobileNetv1/v3</li>  
          <li>GhostNet</li>
          <li>Efficientnet</li>  
K
Kaipeng Deng 已提交
120
          <li>BlazeNet</li>  
121 122 123 124 125 126 127 128 129 130 131
        </ul>
      </td>
      <td>
        <ul><li><b>Common</b></li>
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
            <li>Non-local</li>
          </ul>  
        </ul>
K
Kaipeng Deng 已提交
132 133 134 135 136
        <ul><li><b>KeyPoint</b></li>
          <ul>
            <li>DarkPose</li>
          </ul>  
        </ul>
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        <ul><li><b>FPN</b></li>
          <ul>
            <li>BiFPN</li>
            <li>BFP</li>  
            <li>HRFPN</li>
            <li>ACFPN</li>
          </ul>  
        </ul>  
        <ul><li><b>Loss</b></li>
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
          </ul>  
        </ul>  
        <ul><li><b>Post-processing</b></li>
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
          </ul>  
        </ul>
        <ul><li><b>Speed</b></li>
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
          </ul>  
        </ul>  
      </td>
      <td>
        <ul>
          <li>Resize</li>  
K
Kaipeng Deng 已提交
168
          <li>Lighting</li>  
169 170 171 172 173 174
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
K
Kaipeng Deng 已提交
175
          <li>Mosaic</li>
176 177 178
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
K
Kaipeng Deng 已提交
179
          <li>Random Perspective</li>  
180 181 182 183 184 185 186 187 188 189 190
        </ul>  
      </td>  
    </tr>


</td>
    </tr>
  </tbody>
</table>

#### Overview of Model Performance
K
Kaipeng Deng 已提交
191 192

The relationship between COCO mAP and FPS on Tesla V100 of representative models of each server side architectures and backbones.
193 194 195

<div align="center">
  <img src="docs/images/fps_map.png" />
K
Kaipeng Deng 已提交
196
  </div>
197

K
Kaipeng Deng 已提交
198
  **NOTE:**
199

K
Kaipeng Deng 已提交
200
  - `CBResNet stands` for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3%
201

K
Kaipeng Deng 已提交
202
  - `Cascade-Faster-RCNN` stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection models
203

K
Kaipeng Deng 已提交
204
  - `PP-YOLO` achieves mAP of 45.9% on COCO and 72.9FPS on Tesla V100. Both precision and speed surpass [YOLOv4](https://arxiv.org/abs/2004.10934)
205

K
Kaipeng Deng 已提交
206
  - `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100
207

K
Kaipeng Deng 已提交
208 209 210 211 212 213 214 215 216
  - All these models can be get in [Model Zoo](#ModelZoo)

The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of representative mobile side models.

<div align="center">
  <img src="docs/images/mobile_fps_map.png" width=600 />
</div>

**NOTE:**
217

K
Kaipeng Deng 已提交
218 219
- All data tested on Qualcomm Snapdragon 865(4\*A77 + 4\*A55) processor with batch size of 1 and CPU threads of 4, and use NCNN library in testing, benchmark scripts is publiced at [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
- [PP-PicoDet](configs/picodet) and [PP-YOLO-Tiny](configs/ppyolo) are developed and released by PaddleDetection, other models are not provided in PaddleDetection.
220 221 222 223 224

## Tutorials

### Get Started

qq_30618961's avatar
qq_30618961 已提交
225 226 227
- [Installation guide](docs/tutorials/INSTALL.md)
- [Prepare dataset](docs/tutorials/PrepareDataSet_en.md)
- [Quick start on PaddleDetection](docs/tutorials/GETTING_STARTED.md)
228 229 230 231 232


### Advanced Tutorials

- Parameter configuration
qq_30618961's avatar
qq_30618961 已提交
233 234
  - [Parameter configuration for RCNN model](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation_en.md)
  - [Parameter configuration for PP-YOLO model](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation_en.md)
235 236 237 238 239

- Model Compression(Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
  - [Prune/Quant/Distill](configs/slim)

- Inference and deployment
qq_30618961's avatar
qq_30618961 已提交
240 241
  - [Export model for inference](deploy/EXPORT_MODEL_en.md)
  - [Paddle Inference](deploy/README_en.md)
W
wangguanzhong 已提交
242 243
      - [Python inference](deploy/python)
      - [C++ inference](deploy/cpp)
G
Guanghua Yu 已提交
244
  - [Paddle-Lite](deploy/lite)
W
wangguanzhong 已提交
245
  - [Paddle Serving](deploy/serving)
qq_30618961's avatar
qq_30618961 已提交
246 247
  - [Export ONNX model](deploy/EXPORT_ONNX_MODEL_en.md)
  - [Inference benchmark](deploy/BENCHMARK_INFER_en.md)
248
  - [Exporting to ONNX and using OpenVINO for inference](docs/advanced_tutorials/openvino_inference/README.md)
249 250

- Advanced development
qq_30618961's avatar
qq_30618961 已提交
251 252
  - [New data augmentations](docs/advanced_tutorials/READER_en.md)
  - [New detection algorithms](docs/advanced_tutorials/MODEL_TECHNICAL_en.md)
253 254 255 256 257 258 259


## Model Zoo

- Universal object detection
  - [Model library and baselines](docs/MODEL_ZOO_cn.md)
  - [PP-YOLO](configs/ppyolo/README.md)
W
wangguanzhong 已提交
260
  - [PP-PicoDet](configs/picodet/README.md)
qq_30618961's avatar
qq_30618961 已提交
261 262 263 264
  - [Enhanced Anchor Free model--TTFNet](configs/ttfnet/README_en.md)
  - [Mobile models](static/configs/mobile/README_en.md)
  - [676 classes of object detection](static/docs/featured_model/LARGE_SCALE_DET_MODEL_en.md)
  - [Two-stage practical PSS-Det](configs/rcnn_enhance/README_en.md)
265
  - [SSLD pretrained models](docs/feature_models/SSLD_PRETRAINED_MODEL_en.md)
266 267 268
- Universal instance segmentation
  - [SOLOv2](configs/solov2/README.md)
- Rotation object detection
qq_30618961's avatar
qq_30618961 已提交
269
  - [S2ANet](configs/dota/README_en.md)
G
Guanghua Yu 已提交
270
- [Keypoint detection](configs/keypoint)
W
wangguanzhong 已提交
271
  - [PP-TinyPose](configs/keypoint/tiny_pose)
G
Guanghua Yu 已提交
272
  - HigherHRNet
273
  - HRNet
274
  - LiteHRNet
G
Guanghua Yu 已提交
275
- [Multi-Object Tracking](configs/mot/README.md)
W
wangguanzhong 已提交
276
  - [PP-Tracking](deploy/pptracking/README.md)
G
Guanghua Yu 已提交
277 278 279
  - [DeepSORT](configs/mot/deepsort/README.md)
  - [JDE](configs/mot/jde/README.md)
  - [FairMOT](configs/mot/fairmot/README.md)
280
- Vertical field
qq_30618961's avatar
qq_30618961 已提交
281
  - [Face detection](configs/face_detection/README_en.md)
282 283 284
  - [Pedestrian detection](configs/pedestrian/README.md)
  - [Vehicle detection](configs/vehicle/README.md)
- Competition Plan
qq_30618961's avatar
qq_30618961 已提交
285 286
  - [Objects365 2019 Challenge champion model](static/docs/featured_model/champion_model/CACascadeRCNN_en.md)
  - [Best single model of Open Images 2019-Object Detection](static/docs/featured_model/champion_model/OIDV5_BASELINE_MODEL_en.md)
287 288 289 290

## Applications

- [Christmas portrait automatic generation tool](static/application/christmas)
W
wangguanzhong 已提交
291
- [Android Fitness Demo](https://github.com/zhiboniu/pose_demo_android)
292 293 294

## Updates

K
Kaipeng Deng 已提交
295
Updates please refer to [change log](docs/CHANGELOG_en.md) for details.
296 297 298 299 300 301 302 303 304 305


## License

PaddleDetection is released under the [Apache 2.0 license](LICENSE).


## Contributing

Contributions are highly welcomed and we would really appreciate your feedback!!
306
- Thanks [Mandroide](https://github.com/Mandroide) for cleaning the code and unifying some function interface.
307
- Thanks [FL77N](https://github.com/FL77N/) for contributing the code of `Sparse-RCNN` model.
W
Wenyu 已提交
308
- Thanks [Chen-Song](https://github.com/Chen-Song) for contributing the code of `Swin Faster-RCNN` model.
W
wangguanzhong 已提交
309
- Thanks [yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) for contributing PP-Tracking GUI interface.
W
wangguanzhong 已提交
310
- Thanks [Shigure19](https://github.com/Shigure19) for contributing PP-TinyPose fitness APP.
311 312 313 314 315 316 317 318 319 320 321

## Citation

```
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```