README_en.md 35.9 KB
Newer Older
W
wangguanzhong 已提交
1
[简体中文](README_cn.md) | English
2

3 4 5 6 7
<div align="center">
<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/160532560-34cf7a1f-d950-435e-90d2-4b0a679e5119.png" align="middle" width = "800" />
</p>

8
**A High-Efficient Development Toolkit for Object Detection based on [PaddlePaddle](https://github.com/paddlepaddle/paddle)**
9

10 11 12 13 14 15
<p align="center">
    <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleDetection?color=ffa"></a>
    <a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
    <a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleDetection?color=ccf"></a>
16
</p>
17 18
</div>

19 20
<div  align="center">
  <img src="docs/images/ppdet.gif" width="800"/>
21

22
</div>
W
wangguanzhong 已提交
23

24
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Product Update
25

26 27 28 29
- 🔥 **2022.7.14:Release [pedestrian analysis tool PP-Human v2](./deploy/pipeline)**
  - Four major functions: five complicated action recognition with high performance and Flexible, real-time human attribute recognition, visitor flow statistics and high-accuracy multi-camera tracking.
  - High performance algorithm: including pedestrian detection, tracking, attribute recognition which is robust to the number of targets and the variant of background and light.
  - Highly Flexible: providing complete introduction of end-to-end development and optimization strategy, simple command for deployment and compatibility with different input format.
30

31 32 33 34 35
- 2022.3.24:PaddleDetection released[release/2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)  
  - Release high-performanace SOTA object detection model [PP-YOLOE](configs/ppyoloe). It integrates cloud and edge devices and provides S/M/L/X versions. In particular, Verson L has the accuracy as 51.4% on COCO test 2017 dataset, inference speed as 78.1 FPS on a single Test V100. It supports mixed precision training, 33% faster than PP-YOLOv2. Its full range of multi-sized models can meet different hardware arithmetic requirements, and adaptable to server, edge-device GPU and other AI accelerator cards on servers.
  - Release ultra-lightweight SOTA object detection model [PP-PicoDet Plus](configs/picodet) with 2% improvement in accuracy and 63% improvement in CPU inference speed. Add PicoDet-XS model with a 0.7M parameter, providing model sparsification and quantization functions for model acceleration. No specific post processing module is required for all the hardware, simplifying the deployment.  
  - Release the real-time pedestrian analysis tool [PP-Human](deploy/pphuman). It has four major functions: pedestrian tracking, visitor flow statistics, human attribute recognition and falling detection. For falling detection, it is optimized based on real-life data with accurate recognition of various types of falling posture. It can adapt to different environmental background, light and camera angle.
  - Add [YOLOX](configs/yolox) object detection model with nano/tiny/S/M/L/X. X version has the accuracy as 51.8% on COCO  Val2017 dataset.
36

37
- 2021.11.03: PaddleDetection released [release/2.3 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3)
38

39 40 41 42 43 44
  - Release light-weight featured detection model ⚡[PP-PicoDet](configs/picodet). With a 0.99m parameter, its inference speed could reach to 150FPS when COCO mAP as over 30%
  - Release light-weight keypoint special model ⚡[PP-TinyPose](configs/keypoint/tiny_pose), FP16 inference speed as 122 FPS  and on a single person detection. It has high performance and fast speed, unlimited detection headcounts while being effective on small objects.
  - Release real-time tracking system [PP-Tracking](deploy/pptracking), covering pedestrian, vehicle and multi-category tracking with single and multi-camera, optimization for small and intensive objects, providing technical solutions for human and vehicle traffic.
  - Add object detection models [Swin Transformer](configs/faster_rcnn)[TOOD](configs/tood)[GFL](configs/gfl)
  - Release optimized small object detection model [Sniper](configs/sniper) and [PP-YOLO-EB](configs/ppyolo) model which optimized for EdgeBoard
  - Add light-weight keypoint model [Lite HRNet](configs/keypoint) and supported Paddle Lite deployment
45

46
- [More releases](https://github.com/PaddlePaddle/PaddleDetection/releases)
47

48
## <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> Brief Introduction
49

50
**PaddleDetection** is an end-to-end object detection development kit based on PaddlePaddle. Providing **over 30 model algorithm** and **over 250 pre-trained models**, it covers object detection, instance segmentation, keypoint detection, multi-object tracking. In particular, PaddleDetection offers **high- performance & light-weight** industrial SOTA models on **servers and mobile** devices, champion solution and cutting-edge algorithm. PaddleDetection provides various data augmentation methods, configurable network components, loss functions and other advanced optimization & deployment schemes. In addition to running through the whole process of data processing, model development, training, compression and deployment, PaddlePaddle also provides rich cases and tutorials to accelerate the industrial application of algorithm.
51

52 53
<div  align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157826886-2e101a71-25a2-42f5-bf5e-30a97be28f46.gif" width="800"/>
54 55 56
</div>


57

58
## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> Features
59

60 61 62 63
- **Rich model library**: PaddleDetection provides over 250 pre-trained models including **object detection, instance segmentation, face recognition, multi-object tracking**. It covers a variety of **global competition champion** schemes.
- **Simple to use**: Modular design, decoupling each network component, easy for developers to build and try various detection models and optimization strategies, quick access to high-performance, customized algorithm.
- **Getting Through End to End**: PaddlePaddle gets through end to end from data augmentation, constructing models, training, compression, depolyment. It also supports multi-architecture, multi-device deployment for **cloud and edge** device.
- **High Performance**: Due to the high performance core, PaddlePaddle has clear advantages in training speed and memory occupation. It also supports FP16 training and multi-machine training.
64

65 66 67
<div  align="center">
  <img src="img width="484" alt="newstructure" src="https://user-images.githubusercontent.com/107399028/177736039-fdf69bfc-ef38-40e6-8746-1e581101e76a.png"" width="800"/>
</div
68

69
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> Exchanges
70

71
- If you have any question or suggestion, please give us your valuable input via [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues)
72

73
  Welcome to join PaddleDetection user groups on QQ, WeChat (scan the QR code, add and reply "D" to the assistant)
74

75 76 77 78 79
  <div align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg"  width = "200" />  
  <img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png"  width = "200" />  
  </div>

80
## <img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="20"/> Kit Structure
81

K
Kaipeng Deng 已提交
82
<table align="center">
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
K
Kaipeng Deng 已提交
100
        <ul>
101
        <details><summary><b>Object Detection</b></summary>
102 103 104 105
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
K
Kaipeng Deng 已提交
106
            <li>PSS-Det</li>
107
            <li>RetinaNet</li>
108
            <li>YOLOv3</li>  
K
Kaipeng Deng 已提交
109 110
            <li>PP-YOLOv1/v2</li>
            <li>PP-YOLO-Tiny</li>
F
Feng Ni 已提交
111 112
            <li>PP-YOLOE</li>
            <li>YOLOX</li>
113
            <li>SSD</li>
114
            <li>CenterNet</li>
115 116
            <li>FCOS</li>  
            <li>TTFNet</li>
117 118
            <li>TOOD</li>
            <li>GFL</li>
K
Kaipeng Deng 已提交
119 120 121 122 123
            <li>PP-PicoDet</li>
            <li>DETR</li>
            <li>Deformable DETR</li>
            <li>Swin Transformer</li>
            <li>Sparse RCNN</li>
124 125 126
         </ul></details>
        <details><summary><b>Instance Segmentation</b></summary>
         <ul>
K
Kaipeng Deng 已提交
127
            <li>Mask RCNN</li>
128
            <li>Cascade Mask RCNN</li>
K
Kaipeng Deng 已提交
129
            <li>SOLOv2</li>
130 131
        </ul></details>
        <details><summary><b>Face Detection</b></summary>
K
Kaipeng Deng 已提交
132
        <ul>
K
Kaipeng Deng 已提交
133
            <li>BlazeFace</li>
134 135
        </ul></details>
        <details><summary><b>Multi-Object-Tracking</b></summary>
K
Kaipeng Deng 已提交
136
        <ul>
K
Kaipeng Deng 已提交
137 138
            <li>JDE</li>
            <li>FairMOT</li>
F
Feng Ni 已提交
139
            <li>DeepSORT</li>
140 141 142
            <li>ByteTrack</li>
        </ul></details>
        <details><summary><b>KeyPoint-Detection</b></summary>
K
Kaipeng Deng 已提交
143
        <ul>
K
Kaipeng Deng 已提交
144 145
            <li>HRNet</li>
            <li>HigherHRNet</li>
146 147 148
            <li>Lite-HRNet</li>
            <li>PP-TinyPose</li>
        </ul></details>
K
Kaipeng Deng 已提交
149
      </ul>
150 151
      </td>
      <td>
152
        <details><summary><b>Details</b></summary>
153 154
        <ul>
          <li>ResNet(&vd)</li>
155 156
          <li>Res2Net(&vd)</li>
          <li>CSPResNet</li>
157 158 159
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
160
          <li>Lite-HRNet</li>
161 162 163
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>MobileNetv1/v3</li>  
164
          <li>ShuffleNet</li>
165
          <li>GhostNet</li>
166 167 168 169 170 171 172
          <li>BlazeNet</li>
          <li>DLA</li>
          <li>HardNet</li>
          <li>LCNet</li>  
          <li>ESNet</li>  
          <li>Swin-Transformer</li>
        </ul></details>
173 174
      </td>
      <td>
175
        <details><summary><b>Common</b></summary>
176 177 178 179
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
180 181
            <li>EMA</li>
          </ul> </details>
182
        </ul>
183
        <details><summary><b>KeyPoint</b></summary>
K
Kaipeng Deng 已提交
184 185
          <ul>
            <li>DarkPose</li>
186
          </ul></details>
K
Kaipeng Deng 已提交
187
        </ul>
188
        <details><summary><b>FPN</b></summary>
189 190
          <ul>
            <li>BiFPN</li>
191 192 193
            <li>CSP-PAN</li>
            <li>Custom-PAN</li>
            <li>ES-PAN</li>
194
            <li>HRFPN</li>
195
          </ul> </details>
196
        </ul>  
197
        <details><summary><b>Loss</b></summary>
198 199 200 201
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
202 203 204 205
            <li>Focal Loss</li>
            <li>CT Focal Loss</li>
            <li>VariFocal Loss</li>
          </ul> </details>
206
        </ul>  
207
        <details><summary><b>Post-processing</b></summary>
208 209 210
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
211
          </ul> </details>  
212
        </ul>
213
        <details><summary><b>Speed</b></summary>
214 215 216
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
217
          </ul> </details>  
218 219 220
        </ul>  
      </td>
      <td>
221
        <details><summary><b>Details</b></summary>
222 223
        <ul>
          <li>Resize</li>  
K
Kaipeng Deng 已提交
224
          <li>Lighting</li>  
225 226 227 228 229 230
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
F
Feng Ni 已提交
231
          <li>AugmentHSV</li>
232
          <li>Mosaic</li>
233 234 235
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
K
Kaipeng Deng 已提交
236
          <li>Random Perspective</li>  
237
        </ul> </details>  
238 239 240 241 242 243 244 245
      </td>  
    </tr>

</td>
    </tr>
  </tbody>
</table>

246
## <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> Model Performance
K
Kaipeng Deng 已提交
247

248 249 250 251
<details>
<summary><b> Performance comparison of Cloud models</b></summary>

The comparison between COCO mAP and FPS on Tesla V100 of representative models of each architectures and backbones.
252 253 254

<div align="center">
  <img src="docs/images/fps_map.png" />
255
</div>
256

257
**Clarification:**
258

259 260 261 262 263 264
- `CBResNet` stands for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3%
- `Cascade-Faster-RCNN`stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection models
- `PP-YOLO` reached accuracy as 45.9% on COCO dataset, inference speed as 72.9 FPS on Tesla V100, higher than [YOLOv4]([[2004.10934] YOLOv4: Optimal Speed and Accuracy of Object Detection](https://arxiv.org/abs/2004.10934)) in terms of speed and accuracy
- `PP-YOLO v2`are optimized `PP-YOLO`. It reached accuracy as 49.5% on COCO dataset, inference speed as 68.9 FPS on Tesla V100.
- `PP-YOLOE`are optimized `PP-YOLO v2`. It reached accuracy as 51.4% on COCO dataset, inference speed as 78.1 FPS on Tesla V100
- The models in the figure are available in the[ model library](#模型库)
265

266
</details>
267

268 269
<details>
<summary><b> Performance omparison on mobiles</b></summary>
270

271
The comparison between COCO mAP and FPS on Qualcomm Snapdragon 865 processor of models on mobile devices.
K
Kaipeng Deng 已提交
272 273

<div align="center">
274
  <img src="docs/images/mobile_fps_map.png" width=600/>
K
Kaipeng Deng 已提交
275 276
</div>

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
**Clarification:**

- Tests were conducted on Qualcomm Snapdragon 865 (4 \*A77 + 4 \*A55) batch_size=1, 4 thread, and NCNN inference library, test script see [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
- [PP-PicoDet](configs/picodet) and [PP-YOLO-Tiny](configs/ppyolo) are self-developed models of PaddleDetection, and other models are not tested yet.

</details>

## <img src="https://user-images.githubusercontent.com/48054808/157829890-a535b8a6-631c-4c87-b861-64d4b32b2d6a.png" width="20"/> Model libraries

<details>
<summary><b> 1. General detection</b></summary>

#### PP-YOLOE series Recommended scenarios: Cloud GPU such as Nvidia V100, T4 and edge devices such as Jetson series

| Model      | COCO Accuracy(mAP) | V100 TensorRT FP16 Speed(FPS) | Configuration                                           | Download                                                                                 |
|:---------- |:------------------:|:-----------------------------:|:-------------------------------------------------------:|:----------------------------------------------------------------------------------------:|
| PP-YOLOE-s | 42.7               | 333.3                         | [Link](configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml)     | [Download](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams)      |
| PP-YOLOE-m | 48.6               | 208.3                         | [Link](configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)     | [Download](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams)     |
| PP-YOLOE-l | 50.9               | 149.2                         | [Link](configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) |
| PP-YOLOE-x | 51.9               | 95.2                          | [Link](configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) |

#### PP-PicoDet series Recommended scenarios: Mobile chips and x86 CPU devices, such as ARM CPU(RK3399, Raspberry Pi) and NPU(BITMAIN)

| Model      | COCO Accuracy(mAP) | Snapdragon 865 four-thread speed (ms) | Configuration                                         | Download                                                                              |
|:---------- |:------------------:|:-------------------------------------:|:-----------------------------------------------------:|:-------------------------------------------------------------------------------------:|
| PicoDet-XS | 23.5               | 7.81                                  | [Link](configs/picodet/picodet_xs_320_coco_lcnet.yml) | [Download](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) |
| PicoDet-S  | 29.1               | 9.56                                  | [Link](configs/picodet/picodet_s_320_coco_lcnet.yml)  | [Download](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams)  |
| PicoDet-M  | 34.4               | 17.68                                 | [Link](configs/picodet/picodet_m_320_coco_lcnet.yml)  | [Download](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams)  |
| PicoDet-L  | 36.1               | 25.21                                 | [Link](configs/picodet/picodet_l_320_coco_lcnet.yml)  | [Download](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams)  |

#### Frontier detection algorithm

| Model    | COCO Accuracy(mAP) | V100 TensorRT FP16 speed(FPS) | Configuration                                                                                                  | Download                                                                       |
|:-------- |:------------------:|:-----------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------:|
| YOLOX-l  | 50.1               | 107.5                         | [Link](configs/yolox/yolox_l_300e_coco.yml)                                                                    | [Download](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams)  |
| YOLOv5-l | 48.6               | 136.0                         | [Link](https://github.com/nemonameless/PaddleDetection_YOLOv5/blob/main/configs/yolov5/yolov5_l_300e_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) |

#### Other general purpose models [doc](docs/MODEL_ZOO_cn.md)

</details>

<details>
<summary><b> 2. Instance segmentation</b></summary>

| Model             | Introduction                                             | Recommended Scenarios                         | COCO Accuracy(mAP)               | Configuration                                                           | Download                                                                                              |
|:----------------- |:-------------------------------------------------------- |:--------------------------------------------- |:--------------------------------:|:-----------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|
| Mask RCNN         | Two-stage instance segmentation algorithm                | <div style="width: 50pt">Edge-Cloud end</div> | box AP: 41.4 <br/> mask AP: 37.5 | [Link](configs/mask_rcnn/mask_rcnn_r50_vd_fpn_2x_coco.yml)              | [Download](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams)              |
| Cascade Mask RCNN | Two-stage instance segmentation algorithm                | <div style="width: 50pt">Edge-Cloud end</div> | box AP: 45.7 <br/> mask AP: 39.7 | [Link](configs/mask_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) |
| SOLOv2            | Lightweight single-stage instance segmentation algorithm | <div style="width: 50pt">Edge-Cloud end</div> | mask AP: 38.0                    | [Link](configs/solov2/solov2_r50_fpn_3x_coco.yml)                       | [Download](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_3x_coco.pdparams)                    |

</details>

<details>
<summary><b> 3. Keypoint detection</b></summary>

| Model                | Introduction                                                                                  | Recommended scenarios                         | COCO Accuracy(AP) | Speed                             | Configuration                                             | Download                                                                                    |
|:-------------------- |:--------------------------------------------------------------------------------------------- |:--------------------------------------------- |:-----------------:|:---------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|
| HRNet-w32 + DarkPose | <div style="width: 130pt">Top-down Keypoint detection algorithm<br/>Input size: 384x288</div> | <div style="width: 50pt">Edge-Cloud end</div> | 78.3              | T4 TensorRT FP16 2.96ms           | [Link](configs/keypoint/hrnet/dark_hrnet_w32_384x288.yml) | [Download](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) |
| HRNet-w32 + DarkPose | Top-down Keypoint detection algorithm<br/>Input size: 256x192                                 | Edge-Cloud end                                | 78.0              | T4 TensorRT FP16 1.75ms           | [Link](configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml) | [Download](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) |
| PP-TinyPose          | Light-weight keypoint algorithm<br/>Input size: 256x192                                       | Mobile                                        | 68.8              | Snapdragon 865 four-thread 6.30ms | [Link](configs/keypoint/tiny_pose/tinypose_256x192.yml)   | [Download](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams)    |
| PP-TinyPose          | Light-weight keypoint algorithm<br/>Input size: 128x96                                        | Mobile                                        | 58.1              | Snapdragon 865 four-thread 2.37ms | [Link](configs/keypoint/tiny_pose/tinypose_128x96.yml)    | [Download](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams)     |

#### Other keypoint detection models [doc](configs/keypoint)

</details>

<details>
<summary><b> 4. Multi-object tracking PP-Tracking</b></summary>

| Model     | Introduction                                                  | Recommended scenarios | Accuracy               | Configuration                                                           | Download                                                                                              |
|:--------- |:------------------------------------------------------------- |:--------------------- |:----------------------:|:-----------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|
| DeepSORT  | SDE Multi-object tracking algorithm, independent ReID models  | Edge-Cloud end        | MOT-17 half val:  66.9 | [Link](configs/mot/deepsort/deepsort_jde_yolov3_pcb_pyramid.yml)        | [Download](https://paddledet.bj.bcebos.com/models/mot/deepsort/deepsort_pcb_pyramid_r101.pdparams)    |
| ByteTrack | SDE Multi-object tracking algorithm with detection model only | Edge-Cloud end        | MOT-17 half val:  77.3 | [Link](configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml) | [Download](https://paddledet.bj.bcebos.com/models/mot/deepsort/yolox_x_24e_800x1440_mix_det.pdparams) |
| JDE       | JDE multi-object tracking algorithm multi-task learning       | Edge-Cloud end        | MOT-16 test: 64.6      | [Link](configs/mot/jde/jde_darknet53_30e_1088x608.yml)                  | [Download](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams)            |
| FairMOT   | JDE multi-object tracking algorithm multi-task learning       | Edge-Cloud end        | MOT-16 test: 75.0      | [Link](configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml)              | [Download](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams)            |

#### Other multi-object tracking models [docs](configs/mot)

</details>

<details>
<summary><b> 5. Industrial real-time pedestrain analysis tool-PP Human</b></summary>

| Function \ Model                     | Obejct detection                                                                       | Multi- object tracking                                                                 | Attribute recognition                                                                     | Keypoint detection                                                                        | Action recognition                                                | ReID                                                                   |
|:------------------------------------ |:-------------------------------------------------------------------------------------- |:-------------------------------------------------------------------------------------- |:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------:|:----------------------------------------------------------------------:|
| Pedestrian Detection                 | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                        |                                                                                           |                                                                                           |                                                                   |                                                                        |
| Pedestrian Tracking                  |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           |                                                                                           |                                                                   |                                                                        |
| Attribute Recognition (Image)        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) |                                                                                           |                                                                   |                                                                        |
| Attribute Recognition (Video)        |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           |                                                                                           |                                                                   |                                                                        |
| Falling Detection                    |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) |                                                                        |
| ReID                                 |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           |                                                                                           |                                                                   | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) |
| **Accuracy**                         | mAP 56.3                                                                               | MOTA 72.0                                                                              | mA 94.86                                                                                  | AP 87.1                                                                                   | AP 96.43                                                          | mAP 98.8                                                               |
| **T4 TensorRT FP16 Inference speed** | 28.0ms                                                                                 | 33.1ms                                                                                 | Single person 2ms                                                                         | Single person 2.9ms                                                                       | Single person 2.7ms                                               | Single person 1.5ms                                                    |

</details>

**Click “ ✅ ” to download**

## <img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="20"/>Document tutorials

### Introductory tutorials

- [Installation](docs/tutorials/INSTALL_cn.md)
- [Quick start](docs/tutorials/QUICK_STARTED_cn.md)
- [Data preparation](docs/tutorials/data/README.md)
- [Geting Started on PaddleDetection](docs/tutorials/GETTING_STARTED_cn.md)
- [Customize data training]((docs/tutorials/CustomizeDataTraining.md)
- [FAQ]((docs/tutorials/FAQ)

### Advanced tutorials

- Configuration

  - [RCNN Configuration](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation.md)
  - [PP-YOLO Configuration](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation.md)

- Compression based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)

  - [Pruning/Quantization/Distillation Tutorial](configs/slim)

- [Inference deployment](deploy/README.md)

  - [Export model for inference](deploy/EXPORT_MODEL.md)

  - [Paddle Inference deployment](deploy/README.md)

    - [Inference deployment with Python](deploy/python)
    - [Inference deployment with C++](deploy/cpp)

  - [Paddle-Lite deployment](deploy/lite)

  - [Paddle Serving deployment](deploy/serving)

  - [ONNX model export](deploy/EXPORT_ONNX_MODEL.md)

  - [Inference benchmark](deploy/BENCHMARK_INFER.md)

- Advanced development

  - [Data processing module](docs/advanced_tutorials/READER.md)
  - [New object detection models](docs/advanced_tutorials/MODEL_TECHNICAL.md)
  - Custumization
    - [Object detection](docs/advanced_tutorials/customization/detection.md)
    - [Keypoint detection](docs/advanced_tutorials/customization/keypoint_detection.md)
    - [Multiple object tracking](docs/advanced_tutorials/customization/mot.md)
    - [Action recognition](docs/advanced_tutorials/customization/action.md)
    - [Attribute recognition](docs/advanced_tutorials/customization/attribute.md)

### Courses

- **[Theoretical foundation] [Object detection 7-day camp](https://aistudio.baidu.com/aistudio/education/group/info/1617):** Overview of object detection tasks, details of RCNN series object detection algorithm and YOLO series object detection algorithm, PP-YOLO optimization strategy and case sharing, introduction and practice of AnchorFree series algorithm

- **[Industrial application] [AI Fast Track industrial object detection technology and application](https://aistudio.baidu.com/aistudio/education/group/info/23670):** Super object detection algorithms, real-time pedestrian analysis system PP-Human, breakdown and practice of object detection industrial application

- **[Industrial features] 2022.3.26** **[Smart City Industry Seven-Day Class](https://aistudio.baidu.com/aistudio/education/group/info/25620)** : Urban planning, Urban governance, Smart governance service, Traffic management, community governance.

433
### [Industrial tutorial examples](./industrial_tutorial/README.md)
434 435 436 437 438 439 440 441 442 443 444 445 446 447

- [Road litter detection based on PP-PicoDet Plus](https://aistudio.baidu.com/aistudio/projectdetail/3561097)

- [Communication tower detection based on PP-PicoDet and deployment on Android](https://aistudio.baidu.com/aistudio/projectdetail/3561097)

- [Tile surface defect detection based on Faster-RCNN](https://aistudio.baidu.com/aistudio/projectdetail/2571419)

- [PCB defect detection based on PaddleDetection](https://aistudio.baidu.com/aistudio/projectdetail/2367089)

- [Visitor flow statistics based on FairMOT](https://aistudio.baidu.com/aistudio/projectdetail/2421822)

- [Falling detection based on YOLOv3](https://aistudio.baidu.com/aistudio/projectdetail/2500639)

- [Compliance detection based on human key  point detection](https://aistudio.baidu.com/aistudio/projectdetail/4061642?contributionType=1)
448

449
## <img title="" src="https://user-images.githubusercontent.com/48054808/157836473-1cf451fa-f01f-4148-ba68-b6d06d5da2f9.png" alt="" width="20"> Applications
450

451 452 453 454 455 456 457 458 459 460
- [Fitness app on android mobile](https://github.com/zhiboniu/pose_demo_android)
- [PP-Tracking GUI Visualization Interface](https://github.com/yangyudong2020/PP-Tracking_GUi)

## Recommended third-party tutorials

- [Deployment of PaddleDetection for Windows I ](https://zhuanlan.zhihu.com/p/268657833)
- [Deployment of PaddleDetection for Windows II](https://zhuanlan.zhihu.com/p/280206376)
- [Deployment of PaddleDetection on Jestson Nano](https://zhuanlan.zhihu.com/p/319371293)
- [How to deploy YOLOv3 model on Raspberry Pi for Helmet detection](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/yolov3_for_raspi.md)
- [Use SSD-MobileNetv1 for a project -- From dataset to deployment on Raspberry Pi](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/ssd_mobilenet_v1_for_raspi.md)
461

462
## <img src="https://user-images.githubusercontent.com/48054808/157835981-ef6057b4-6347-4768-8fcc-cd07fcc3d8b0.png" width="20"/> Version updates
463

464
Please refer to the[ Release note ](https://github.com/PaddlePaddle/Paddle/wiki/PaddlePaddle-2.3.0-Release-Note-EN)for more details about the updates
465

466
## <img title="" src="https://user-images.githubusercontent.com/48054808/157835345-f5d24128-abaf-4813-b793-d2e5bdc70e5a.png" alt="" width="20">  License
467

468
PaddlePaddle is provided under the [Apache 2.0 license](LICENSE)
469

470
## <img src="https://user-images.githubusercontent.com/48054808/157835796-08d4ffbc-87d9-4622-89d8-cf11a44260fc.png" width="20"/> Contribute your code
471

472
We appreciate your contributions and your feedback!
473

474 475 476 477 478 479
- Thank [Mandroide](https://github.com/Mandroide) for code cleanup and
- Thank [FL77N](https://github.com/FL77N/) for `Sparse-RCNN`model
- Thank [Chen-Song](https://github.com/Chen-Song) for `Swin Faster-RCNN`model
- Thank [yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) for developing PP-Tracking GUI interface
- Thank Shigure19 for developing PP-TinyPose fitness APP
- Thank [manangoel99](https://github.com/manangoel99) for Wandb visualization methods
480

481
## <img src="https://user-images.githubusercontent.com/48054808/157835276-9aab9d1c-1c46-446b-bdd4-5ab75c5cfa48.png" width="20"/> Quote
482 483 484 485 486 487 488 489 490

```
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```