README_en.md 16.5 KB
Newer Older
1 2
English | [简体中文](README_cn.md)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
<div align="center">
<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/160532560-34cf7a1f-d950-435e-90d2-4b0a679e5119.png" align="middle" width = "800" />
</p>

****A High-Efficient Development Toolkit for Object Detection based on [PaddlePaddle](https://github.com/paddlepaddle/paddle).****

[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
[![Version](https://img.shields.io/github/release/PaddlePaddle/PaddleDetection.svg)](https://github.com/PaddlePaddle/PaddleDetection/releases)
![python version](https://img.shields.io/badge/python-3.6+-orange.svg)
![support os](https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-yellow.svg)

</div>

## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Latest News
18

19
- 🔥 **2022.3.24:PaddleDetection [release 2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
W
Wenyu 已提交
20

21 22 23
  - Release GPU SOTA object detection series models (s/m/l/x) [PP-YOLOE](configs/ppyoloe), achieving mAP as 51.4% on COCO test dataset and 78.1 FPS on Nvidia V100, supporting AMP training and its training speed is 33% faster than PP-YOLOv2.
  - Release enhanced models of [PP-PicoDet](configs/picodet), including PP-PicoDet-XS model with 0.7M parameters, its mAP promoted ~2% on COCO, inference speed accelerated 63% on CPU, and post-processing integrated into the network to optimize deployment pipeline.
  - Release real-time human analysis tool [PP-Human](deploy/pphuman), which is based on data from real-life situations, supporting pedestrian detection, attribute recognition, human tracking, multi-camera tracking, human statistics and action recognition.
W
wangguanzhong 已提交
24

W
wangguanzhong 已提交
25
- 2021.11.03: Release [release/2.3](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.3) version. Release mobile object detection model ⚡[PP-PicoDet](configs/picodet), mobile keypoint detection model ⚡[PP-TinyPose](configs/keypoint/tiny_pose),Real-time tracking system [PP-Tracking](deploy/pptracking). Release object detection models, including [Swin-Transformer](configs/faster_rcnn), [TOOD](configs/tood), [GFL](configs/gfl), release [Sniper](configs/sniper) tiny object detection models and optimized [PP-YOLO-EB](configs/ppyolo) model for EdgeBoard. Release mobile keypoint detection model [Lite HRNet](configs/keypoint).
26

K
Kaipeng Deng 已提交
27
- 2021.08.10: Release [release/2.2](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.2) version. Release Transformer object detection models, including [DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn). Release [keypoint detection](configs/keypoint) models, including DarkHRNet and model trained on MPII dataset. Release [head-tracking](configs/mot/headtracking21) and [vehicle-tracking](configs/mot/vehicle) multi-object tracking models.
28

29
- 2021.05.20: Release [release/2.1](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.1) version. Release [Keypoint Detection](configs/keypoint), including HigherHRNet and HRNet, [Multi-Object Tracking](configs/mot), including DeepSORT,JDE and FairMOT. Release model compression for PPYOLO series models.Update documents such as [EXPORT ONNX MODEL](deploy/EXPORT_ONNX_MODEL.md).
30

31
## <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> Introduction
32

K
Kaipeng Deng 已提交
33
PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle, which implements varied mainstream object detection, instance segmentation, tracking and keypoint detection algorithms in modular designwhich with configurable modules such as network components, data augmentations and losses, and release many kinds SOTA industry practice models, integrates abilities of model compression and cross-platform high-performance deployment, aims to help developers in the whole end-to-end development in a faster and better way.
34

35 36 37 38 39 40 41
#### PaddleDetection provides image processing capabilities such as object detection, instance segmentation, multi-object tracking, keypoint detection and etc.

<div  align="center">
  <img src="docs/images/ppdet.gif" width="800"/>
</div>

#### PaddleDetection covers industrialization, smart city, security & protection, retail, medicare industry and etc.
42

43 44
<div  align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157826886-2e101a71-25a2-42f5-bf5e-30a97be28f46.gif" width="800"/>
45 46
</div>

47
## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> Features
48

W
Wenyu 已提交
49 50
- **Rich Models**

51
  PaddleDetection provides rich of models, including **250+ pre-trained models** such as **object detection**, **instance segmentation**, **face detection**, **keypoint detection**, **multi-object tracking** and etc, covering a variety of **global competition champion** schemes.
52

53
- **Highly Flexible**
W
Wenyu 已提交
54

55
  Components are designed to be modular. Model architectures, as well as data preprocess pipelines and optimization strategies, can be easily customized with simple configuration changes.
56

W
Wenyu 已提交
57 58
- **Production Ready**

59
  From data augmentation, constructing models, training, compression, depolyment, get through end to end, and complete support for multi-architecture, multi-device deployment for **cloud and edge device**.
60

W
Wenyu 已提交
61 62
- **High Performance**

63
  Based on the high performance core of PaddlePaddle, advantages of training speed and memory occupation are obvious. FP16 training and multi-machine training are supported as well.
64

65
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> Community
66

67 68 69
- If you have any problem or suggestion on PaddleDetection, please send us issues through [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues).

- Welcome to Join PaddleDetection QQ Group and Wechat Group (reply "Det").
W
Wenyu 已提交
70

71 72 73 74 75 76
  <div align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg"  width = "200" />  
  <img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png"  width = "200" />  
  </div>

## <img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="20"/> Overview of Kit Structures
77

K
Kaipeng Deng 已提交
78
<table align="center">
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
K
Kaipeng Deng 已提交
96 97
        <ul>
          <li><b>Object Detection</b></li>
98 99 100 101 102 103
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
            <li>Libra RCNN</li>
            <li>Hybrid Task RCNN</li>
K
Kaipeng Deng 已提交
104
            <li>PSS-Det</li>
105 106 107
            <li>RetinaNet</li>
            <li>YOLOv3</li>
            <li>YOLOv4</li>  
K
Kaipeng Deng 已提交
108 109
            <li>PP-YOLOv1/v2</li>
            <li>PP-YOLO-Tiny</li>
110 111 112 113
            <li>SSD</li>
            <li>CornerNet-Squeeze</li>
            <li>FCOS</li>  
            <li>TTFNet</li>
K
Kaipeng Deng 已提交
114 115 116 117 118
            <li>PP-PicoDet</li>
            <li>DETR</li>
            <li>Deformable DETR</li>
            <li>Swin Transformer</li>
            <li>Sparse RCNN</li>
119
        </ul>
K
Kaipeng Deng 已提交
120
        <li><b>Instance Segmentation</b></li>
121
        <ul>
K
Kaipeng Deng 已提交
122 123
            <li>Mask RCNN</li>
            <li>SOLOv2</li>
124
        </ul>
K
Kaipeng Deng 已提交
125
        <li><b>Face Detection</b></li>
K
Kaipeng Deng 已提交
126
        <ul>
K
Kaipeng Deng 已提交
127 128 129
            <li>FaceBoxes</li>
            <li>BlazeFace</li>
            <li>BlazeFace-NAS</li>
K
Kaipeng Deng 已提交
130
        </ul>
K
Kaipeng Deng 已提交
131
        <li><b>Multi-Object-Tracking</b></li>
K
Kaipeng Deng 已提交
132
        <ul>
K
Kaipeng Deng 已提交
133 134 135
            <li>JDE</li>
            <li>FairMOT</li>
            <li>DeepSort</li>
K
Kaipeng Deng 已提交
136
        </ul>
K
Kaipeng Deng 已提交
137
        <li><b>KeyPoint-Detection</b></li>
K
Kaipeng Deng 已提交
138
        <ul>
K
Kaipeng Deng 已提交
139 140
            <li>HRNet</li>
            <li>HigherHRNet</li>
K
Kaipeng Deng 已提交
141
        </ul>
K
Kaipeng Deng 已提交
142
      </ul>
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
      </td>
      <td>
        <ul>
          <li>ResNet(&vd)</li>
          <li>ResNeXt(&vd)</li>
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
          <li>Hourglass</li>
          <li>CBNet</li>
          <li>GCNet</li>
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>VGG</li>
          <li>MobileNetv1/v3</li>  
          <li>GhostNet</li>
          <li>Efficientnet</li>  
K
Kaipeng Deng 已提交
160
          <li>BlazeNet</li>  
161 162 163 164 165 166 167 168 169 170 171
        </ul>
      </td>
      <td>
        <ul><li><b>Common</b></li>
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
            <li>Non-local</li>
          </ul>  
        </ul>
K
Kaipeng Deng 已提交
172 173 174 175 176
        <ul><li><b>KeyPoint</b></li>
          <ul>
            <li>DarkPose</li>
          </ul>  
        </ul>
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        <ul><li><b>FPN</b></li>
          <ul>
            <li>BiFPN</li>
            <li>BFP</li>  
            <li>HRFPN</li>
            <li>ACFPN</li>
          </ul>  
        </ul>  
        <ul><li><b>Loss</b></li>
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
          </ul>  
        </ul>  
        <ul><li><b>Post-processing</b></li>
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
          </ul>  
        </ul>
        <ul><li><b>Speed</b></li>
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
          </ul>  
        </ul>  
      </td>
      <td>
        <ul>
          <li>Resize</li>  
K
Kaipeng Deng 已提交
208
          <li>Lighting</li>  
209 210 211 212 213 214
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
K
Kaipeng Deng 已提交
215
          <li>Mosaic</li>
216 217 218
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
K
Kaipeng Deng 已提交
219
          <li>Random Perspective</li>  
220 221 222 223 224 225 226 227 228
        </ul>  
      </td>  
    </tr>

</td>
    </tr>
  </tbody>
</table>

229
## <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> Overview of Model Performance
K
Kaipeng Deng 已提交
230 231

The relationship between COCO mAP and FPS on Tesla V100 of representative models of each server side architectures and backbones.
232 233 234

<div align="center">
  <img src="docs/images/fps_map.png" />
235
</div>
236

237
**NOTE:**
238

239
- `CBResNet stands` for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3%
240

241
- `Cascade-Faster-RCNN` stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection models
242

243
- `PP-YOLO` achieves mAP of 45.9% on COCO and 72.9FPS on Tesla V100. Both precision and speed surpass [YOLOv4](https://arxiv.org/abs/2004.10934)
244

245
- `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100
W
Wenyu 已提交
246
- `PP-YOLOE` is optimized version of `PP-YOLO v2` which has mAP of 51.4% and 78.1FPS on Tesla V100
247
- All these models can be get in [Model Zoo](#ModelZoo)
K
Kaipeng Deng 已提交
248 249 250 251

The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of representative mobile side models.

<div align="center">
252
  <img src="docs/images/mobile_fps_map.png" width=600/>
K
Kaipeng Deng 已提交
253 254 255
</div>

**NOTE:**
256

257
- All data tested on Qualcomm Snapdragon 865(4*A77 + 4*A55) processor with batch size of 1 and CPU threads of 4, and use NCNN library in testing, benchmark scripts is publiced at [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
K
Kaipeng Deng 已提交
258
- [PP-PicoDet](configs/picodet) and [PP-YOLO-Tiny](configs/ppyolo) are developed and released by PaddleDetection, other models are not provided in PaddleDetection.
259

260
## <img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="20"/> Tutorials
261 262 263

### Get Started

qq_30618961's avatar
qq_30618961 已提交
264 265 266
- [Installation guide](docs/tutorials/INSTALL.md)
- [Prepare dataset](docs/tutorials/PrepareDataSet_en.md)
- [Quick start on PaddleDetection](docs/tutorials/GETTING_STARTED.md)
267 268 269 270

### Advanced Tutorials

- Parameter configuration
W
Wenyu 已提交
271

qq_30618961's avatar
qq_30618961 已提交
272 273
  - [Parameter configuration for RCNN model](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation_en.md)
  - [Parameter configuration for PP-YOLO model](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation_en.md)
274 275

- Model Compression(Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
W
Wenyu 已提交
276

277 278 279
  - [Prune/Quant/Distill](configs/slim)

- Inference and deployment
W
Wenyu 已提交
280

qq_30618961's avatar
qq_30618961 已提交
281 282
  - [Export model for inference](deploy/EXPORT_MODEL_en.md)
  - [Paddle Inference](deploy/README_en.md)
283 284
    - [Python inference](deploy/python)
    - [C++ inference](deploy/cpp)
G
Guanghua Yu 已提交
285
  - [Paddle-Lite](deploy/lite)
W
wangguanzhong 已提交
286
  - [Paddle Serving](deploy/serving)
qq_30618961's avatar
qq_30618961 已提交
287 288
  - [Export ONNX model](deploy/EXPORT_ONNX_MODEL_en.md)
  - [Inference benchmark](deploy/BENCHMARK_INFER_en.md)
289
  - [Exporting to ONNX and using OpenVINO for inference](docs/advanced_tutorials/openvino_inference/README.md)
290 291

- Advanced development
W
Wenyu 已提交
292

qq_30618961's avatar
qq_30618961 已提交
293
  - [New data augmentations](docs/advanced_tutorials/READER_en.md)
294
  - [New detection algorithms](docs/advanced_tutorials/MODEL_TECHNICAL.md)
295

296
## <img src="https://user-images.githubusercontent.com/48054808/157829890-a535b8a6-631c-4c87-b861-64d4b32b2d6a.png" width="20"/> Model Zoo
297 298 299

- Universal object detection
  - [Model library and baselines](docs/MODEL_ZOO_cn.md)
300
  - [PP-YOLOE](configs/ppyoloe/README_cn.md)
301
  - [PP-YOLO](configs/ppyolo/README.md)
W
wangguanzhong 已提交
302
  - [PP-PicoDet](configs/picodet/README.md)
qq_30618961's avatar
qq_30618961 已提交
303 304 305 306
  - [Enhanced Anchor Free model--TTFNet](configs/ttfnet/README_en.md)
  - [Mobile models](static/configs/mobile/README_en.md)
  - [676 classes of object detection](static/docs/featured_model/LARGE_SCALE_DET_MODEL_en.md)
  - [Two-stage practical PSS-Det](configs/rcnn_enhance/README_en.md)
307
  - [SSLD pretrained models](docs/feature_models/SSLD_PRETRAINED_MODEL_en.md)
308 309 310
- Universal instance segmentation
  - [SOLOv2](configs/solov2/README.md)
- Rotation object detection
qq_30618961's avatar
qq_30618961 已提交
311
  - [S2ANet](configs/dota/README_en.md)
G
Guanghua Yu 已提交
312
- [Keypoint detection](configs/keypoint)
W
wangguanzhong 已提交
313
  - [PP-TinyPose](configs/keypoint/tiny_pose)
G
Guanghua Yu 已提交
314
  - HigherHRNet
315
  - HRNet
316
  - LiteHRNet
G
Guanghua Yu 已提交
317
- [Multi-Object Tracking](configs/mot/README.md)
W
wangguanzhong 已提交
318
  - [PP-Tracking](deploy/pptracking/README.md)
G
Guanghua Yu 已提交
319 320 321
  - [DeepSORT](configs/mot/deepsort/README.md)
  - [JDE](configs/mot/jde/README.md)
  - [FairMOT](configs/mot/fairmot/README.md)
322
- Vertical field
qq_30618961's avatar
qq_30618961 已提交
323
  - [Face detection](configs/face_detection/README_en.md)
324 325
  - [Pedestrian detection](configs/pedestrian/README.md)
  - [Vehicle detection](configs/vehicle/README.md)
326
  - [Real-Time Human Analysis Tool PP-Human](deploy/pphuman)
327
- Competition Plan
qq_30618961's avatar
qq_30618961 已提交
328 329
  - [Objects365 2019 Challenge champion model](static/docs/featured_model/champion_model/CACascadeRCNN_en.md)
  - [Best single model of Open Images 2019-Object Detection](static/docs/featured_model/champion_model/OIDV5_BASELINE_MODEL_en.md)
330

331
## <img title="" src="https://user-images.githubusercontent.com/48054808/157836473-1cf451fa-f01f-4148-ba68-b6d06d5da2f9.png" alt="" width="20"> Applications
332 333

- [Christmas portrait automatic generation tool](static/application/christmas)
W
wangguanzhong 已提交
334
- [Android Fitness Demo](https://github.com/zhiboniu/pose_demo_android)
335

336
## <img src="https://user-images.githubusercontent.com/48054808/157835981-ef6057b4-6347-4768-8fcc-cd07fcc3d8b0.png" width="20"/> Updates
337

338
For the details of version update, please refer to [Version Update Doc](docs/CHANGELOG.md).
339

340
## <img title="" src="https://user-images.githubusercontent.com/48054808/157835345-f5d24128-abaf-4813-b793-d2e5bdc70e5a.png" alt="" width="20"> License
341 342 343

PaddleDetection is released under the [Apache 2.0 license](LICENSE).

344
## <img src="https://user-images.githubusercontent.com/48054808/157835796-08d4ffbc-87d9-4622-89d8-cf11a44260fc.png" width="20"/> Contribution
345 346

Contributions are highly welcomed and we would really appreciate your feedback!!
347

348
- Thanks [Mandroide](https://github.com/Mandroide) for cleaning the code and unifying some function interface.
349
- Thanks [FL77N](https://github.com/FL77N/) for contributing the code of `Sparse-RCNN` model.
W
Wenyu 已提交
350
- Thanks [Chen-Song](https://github.com/Chen-Song) for contributing the code of `Swin Faster-RCNN` model.
W
wangguanzhong 已提交
351
- Thanks [yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) for contributing PP-Tracking GUI interface.
W
wangguanzhong 已提交
352
- Thanks [Shigure19](https://github.com/Shigure19) for contributing PP-TinyPose fitness APP.
353

354
## <img src="https://user-images.githubusercontent.com/48054808/157835276-9aab9d1c-1c46-446b-bdd4-5ab75c5cfa48.png" width="20"/> Citation
355 356 357 358 359 360 361 362 363

```
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```