post_process.py 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
W
wangxinxin08 已提交
20
from ppdet.modeling.bbox_utils import nonempty_bbox
21
from .transformers import bbox_cxcywh_to_xyxy
W
wangguanzhong 已提交
22 23 24 25
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
26

27
__all__ = [
F
Feng Ni 已提交
28 29
    'BBoxPostProcess', 'MaskPostProcess', 'JDEBBoxPostProcess',
    'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess'
30
]
F
Feng Ni 已提交
31

Q
qingqing01 已提交
32 33

@register
G
Guanghua Yu 已提交
34
class BBoxPostProcess(object):
35
    __shared__ = ['num_classes', 'export_onnx', 'export_eb']
Q
qingqing01 已提交
36 37
    __inject__ = ['decode', 'nms']

F
Feng Ni 已提交
38 39 40 41 42 43
    def __init__(self,
                 num_classes=80,
                 decode=None,
                 nms=None,
                 export_onnx=False,
                 export_eb=False):
Q
qingqing01 已提交
44
        super(BBoxPostProcess, self).__init__()
45
        self.num_classes = num_classes
Q
qingqing01 已提交
46 47
        self.decode = decode
        self.nms = nms
48
        self.export_onnx = export_onnx
49
        self.export_eb = export_eb
Q
qingqing01 已提交
50

G
Guanghua Yu 已提交
51
    def __call__(self, head_out, rois, im_shape, scale_factor):
52
        """
G
Guanghua Yu 已提交
53
        Decode the bbox and do NMS if needed.
54

F
Feng Ni 已提交
55 56 57 58 59
        Args:
            head_out (tuple): bbox_pred and cls_prob of bbox_head output.
            rois (tuple): roi and rois_num of rpn_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
60
            export_onnx (bool): whether export model to onnx
61
        Returns:
F
Feng Ni 已提交
62 63 64 65 66
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
67
        """
F
Feng Ni 已提交
68 69
        if self.nms is not None:
            bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
X
xs1997zju 已提交
70
            bbox_pred, bbox_num, before_nms_indexes = self.nms(bboxes, score, self.num_classes)
71

F
Feng Ni 已提交
72 73 74
        else:
            bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
                                              scale_factor)
75 76 77 78 79 80 81 82 83 84

        if self.export_onnx:
            # add fake box after postprocess when exporting onnx 
            fake_bboxes = paddle.to_tensor(
                np.array(
                    [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))

            bbox_pred = paddle.concat([bbox_pred, fake_bboxes])
            bbox_num = bbox_num + 1

X
xs1997zju 已提交
85 86 87 88
        if self.nms is not None:
            return bbox_pred, bbox_num, before_nms_indexes
        else:
            return bbox_pred, bbox_num
Q
qingqing01 已提交
89

90 91 92
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
        """
        Rescale, clip and filter the bbox from the output of NMS to 
F
Feng Ni 已提交
93
        get final prediction. 
G
Guanghua Yu 已提交
94

F
Feng Ni 已提交
95 96
        Notes:
        Currently only support bs = 1.
97 98

        Args:
G
Guanghua Yu 已提交
99
            bboxes (Tensor): The output bboxes with shape [N, 6] after decode
F
Feng Ni 已提交
100 101 102 103 104
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
105
        Returns:
F
Feng Ni 已提交
106 107
            pred_result (Tensor): The final prediction results with shape [N, 6]
                including labels, scores and bboxes.
108
        """
109 110 111 112
        if self.export_eb:
            # enable rcnn models for edgeboard hw to skip the following postprocess.
            return bboxes, bboxes, bbox_num

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        if not self.export_onnx:
            bboxes_list = []
            bbox_num_list = []
            id_start = 0
            fake_bboxes = paddle.to_tensor(
                np.array(
                    [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
            fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))

            # add fake bbox when output is empty for each batch
            for i in range(bbox_num.shape[0]):
                if bbox_num[i] == 0:
                    bboxes_i = fake_bboxes
                    bbox_num_i = fake_bbox_num
                else:
                    bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
                    bbox_num_i = bbox_num[i]
                    id_start += bbox_num[i]
                bboxes_list.append(bboxes_i)
                bbox_num_list.append(bbox_num_i)
            bboxes = paddle.concat(bboxes_list)
            bbox_num = paddle.concat(bbox_num_list)
W
wangguanzhong 已提交
135

136 137
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        if not self.export_onnx:
            origin_shape_list = []
            scale_factor_list = []
            # scale_factor: scale_y, scale_x
            for i in range(bbox_num.shape[0]):
                expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                             [bbox_num[i], 2])
                scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
                scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
                expand_scale = paddle.expand(scale, [bbox_num[i], 4])
                origin_shape_list.append(expand_shape)
                scale_factor_list.append(expand_scale)

            self.origin_shape_list = paddle.concat(origin_shape_list)
            scale_factor_list = paddle.concat(scale_factor_list)

        else:
            # simplify the computation for bs=1 when exporting onnx
            scale_y, scale_x = scale_factor[0][0], scale_factor[0][1]
            scale = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y]).unsqueeze(0)
            self.origin_shape_list = paddle.expand(origin_shape,
                                                   [bbox_num[0], 2])
            scale_factor_list = paddle.expand(scale, [bbox_num[0], 4])
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

        # bboxes: [N, 6], label, score, bbox
        pred_label = bboxes[:, 0:1]
        pred_score = bboxes[:, 1:2]
        pred_bbox = bboxes[:, 2:]
        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = self.origin_shape_list[:, 0]
        origin_w = self.origin_shape_list[:, 1]
        zeros = paddle.zeros_like(origin_h)
        # clip bbox to [0, original_size]
        x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
        pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        # filter empty bbox
        keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
        keep_mask = paddle.unsqueeze(keep_mask, [1])
        pred_label = paddle.where(keep_mask, pred_label,
                                  paddle.ones_like(pred_label) * -1)
        pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
W
wangguanzhong 已提交
184
        return bboxes, pred_result, bbox_num
185 186 187 188

    def get_origin_shape(self, ):
        return self.origin_shape_list

Q
qingqing01 已提交
189 190 191

@register
class MaskPostProcess(object):
192
    __shared__ = ['export_onnx', 'assign_on_cpu']
W
wangguanzhong 已提交
193 194 195 196 197 198 199
    """
    refer to:
    https://github.com/facebookresearch/detectron2/layers/mask_ops.py

    Get Mask output according to the output from model
    """

200 201 202 203
    def __init__(self,
                 binary_thresh=0.5,
                 export_onnx=False,
                 assign_on_cpu=False):
Q
qingqing01 已提交
204 205
        super(MaskPostProcess, self).__init__()
        self.binary_thresh = binary_thresh
W
wangguanzhong 已提交
206
        self.export_onnx = export_onnx
207
        self.assign_on_cpu = assign_on_cpu
Q
qingqing01 已提交
208

209 210
    def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
        """
F
Feng Ni 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223
        Decode the mask_out and paste the mask to the origin image.

        Args:
            mask_out (Tensor): mask_head output with shape [N, 28, 28].
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            origin_shape (Tensor): The origin shape of the input image, the tensor
                shape is [N, 2], and each row is [h, w].
        Returns:
            pred_result (Tensor): The final prediction mask results with shape
                [N, h, w] in binary mask style.
224 225
        """
        num_mask = mask_out.shape[0]
G
Guanghua Yu 已提交
226
        origin_shape = paddle.cast(origin_shape, 'int32')
227
        device = paddle.device.get_device()
W
wangguanzhong 已提交
228 229 230

        if self.export_onnx:
            h, w = origin_shape[0][0], origin_shape[0][1]
U
ucsk 已提交
231 232
            mask_onnx = paste_mask(mask_out[:, None, :, :], bboxes[:, 2:], h, w,
                                   self.assign_on_cpu)
W
wangguanzhong 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
            mask_onnx = mask_onnx >= self.binary_thresh
            pred_result = paddle.cast(mask_onnx, 'int32')

        else:
            max_h = paddle.max(origin_shape[:, 0])
            max_w = paddle.max(origin_shape[:, 1])
            pred_result = paddle.zeros(
                [num_mask, max_h, max_w], dtype='int32') - 1

            id_start = 0
            for i in range(paddle.shape(bbox_num)[0]):
                bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
                mask_out_i = mask_out[id_start:id_start + bbox_num[i], :, :]
                im_h = origin_shape[i, 0]
                im_w = origin_shape[i, 1]
U
ucsk 已提交
248 249 250
                pred_mask = paste_mask(mask_out_i[:, None, :, :],
                                       bboxes_i[:, 2:], im_h, im_w,
                                       self.assign_on_cpu)
W
wangguanzhong 已提交
251 252 253 254 255
                pred_mask = paddle.cast(pred_mask >= self.binary_thresh,
                                        'int32')
                pred_result[id_start:id_start + bbox_num[i], :im_h, :
                            im_w] = pred_mask
                id_start += bbox_num[i]
256
        if self.assign_on_cpu:
257
            paddle.set_device(device)
258

259
        return pred_result
F
Feng Ni 已提交
260 261


262
@register
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
class JDEBBoxPostProcess(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['decode', 'nms']

    def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True):
        super(JDEBBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.decode = decode
        self.nms = nms
        self.return_idx = return_idx

        self.fake_bbox_pred = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
        self.fake_nms_keep_idx = paddle.to_tensor(
            np.array(
                [[0]], dtype='int32'))

        self.fake_yolo_boxes_out = paddle.to_tensor(
            np.array(
                [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32'))
        self.fake_yolo_scores_out = paddle.to_tensor(
            np.array(
                [[[0.0]]], dtype='float32'))
        self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64'))

G
George Ni 已提交
290
    def forward(self, head_out, anchors):
291 292 293 294 295 296 297 298 299 300 301 302 303 304
        """
        Decode the bbox and do NMS for JDE model. 

        Args:
            head_out (list): Bbox_pred and cls_prob of bbox_head output.
            anchors (list): Anchors of JDE model.

        Returns:
            boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. 
            bbox_pred (Tensor): The output is the prediction with shape [N, 6]
                including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction of each batch with shape [N].
            nms_keep_idx (Tensor): The index of kept bboxes after NMS. 
        """
305
        boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors)
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320
        if len(boxes_idx) == 0:
            boxes_idx = self.fake_boxes_idx
            yolo_boxes_out = self.fake_yolo_boxes_out
            yolo_scores_out = self.fake_yolo_scores_out
        else:
            yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx)
            # TODO: only support bs=1 now
            yolo_boxes_out = paddle.reshape(
                yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4])
            yolo_scores_out = paddle.reshape(
                yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)])
            boxes_idx = boxes_idx[:, 1:]

        if self.return_idx:
G
George Ni 已提交
321 322 323 324 325 326
            bbox_pred, bbox_num, nms_keep_idx = self.nms(
                yolo_boxes_out, yolo_scores_out, self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
                nms_keep_idx = self.fake_nms_keep_idx
327 328
            return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
        else:
G
George Ni 已提交
329 330 331 332 333 334
            bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out,
                                              self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
            return _, bbox_pred, bbox_num, _
F
FlyingQianMM 已提交
335 336 337


@register
338
class CenterNetPostProcess(object):
F
FlyingQianMM 已提交
339 340 341 342 343 344 345 346 347 348 349 350
    """
    Postprocess the model outputs to get final prediction:
        1. Do NMS for heatmap to get top `max_per_img` bboxes.
        2. Decode bboxes using center offset and box size.
        3. Rescale decoded bboxes reference to the origin image shape.
    Args:
        max_per_img(int): the maximum number of predicted objects in a image,
            500 by default.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        regress_ltrb (bool): whether to regress left/top/right/bottom or
            width/height for a box, true by default.
    """
351
    __shared__ = ['down_ratio']
F
FlyingQianMM 已提交
352

353 354
    def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True):
        super(CenterNetPostProcess, self).__init__()
F
FlyingQianMM 已提交
355 356 357
        self.max_per_img = max_per_img
        self.down_ratio = down_ratio
        self.regress_ltrb = regress_ltrb
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        # _simple_nms() _topk() are same as TTFBox in ppdet/modeling/layers.py

    def _simple_nms(self, heat, kernel=3):
        """ Use maxpool to filter the max score, get local peaks. """
        pad = (kernel - 1) // 2
        hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad)
        keep = paddle.cast(hmax == heat, 'float32')
        return heat * keep

    def _topk(self, scores):
        """ Select top k scores and decode to get xy coordinates. """
        k = self.max_per_img
        shape_fm = paddle.shape(scores)
        shape_fm.stop_gradient = True
        cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
        # batch size is 1
        scores_r = paddle.reshape(scores, [cat, -1])
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_ys = topk_inds // width
        topk_xs = topk_inds % width

        topk_score_r = paddle.reshape(topk_scores, [-1])
        topk_score, topk_ind = paddle.topk(topk_score_r, k)
        k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64')
        topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')

        topk_inds = paddle.reshape(topk_inds, [-1])
        topk_ys = paddle.reshape(topk_ys, [-1, 1])
        topk_xs = paddle.reshape(topk_xs, [-1, 1])
        topk_inds = paddle.gather(topk_inds, topk_ind)
        topk_ys = paddle.gather(topk_ys, topk_ind)
        topk_xs = paddle.gather(topk_xs, topk_ind)
        return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
F
FlyingQianMM 已提交
391 392

    def __call__(self, hm, wh, reg, im_shape, scale_factor):
393
        # 1.get clses and scores, note that hm had been done sigmoid
F
FlyingQianMM 已提交
394
        heat = self._simple_nms(hm)
395
        scores, inds, topk_clses, ys, xs = self._topk(heat)
F
Feng Ni 已提交
396
        clses = topk_clses.unsqueeze(1)
397
        scores = scores.unsqueeze(1)
F
FlyingQianMM 已提交
398

399
        # 2.get bboxes, note only support batch_size=1 now
F
FlyingQianMM 已提交
400
        reg_t = paddle.transpose(reg, [0, 2, 3, 1])
F
Feng Ni 已提交
401
        reg = paddle.reshape(reg_t, [-1, reg_t.shape[-1]])
F
FlyingQianMM 已提交
402 403 404 405 406 407
        reg = paddle.gather(reg, inds)
        xs = paddle.cast(xs, 'float32')
        ys = paddle.cast(ys, 'float32')
        xs = xs + reg[:, 0:1]
        ys = ys + reg[:, 1:2]
        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
F
Feng Ni 已提交
408
        wh = paddle.reshape(wh_t, [-1, wh_t.shape[-1]])
F
FlyingQianMM 已提交
409 410 411 412 413 414 415 416 417 418 419
        wh = paddle.gather(wh, inds)
        if self.regress_ltrb:
            x1 = xs - wh[:, 0:1]
            y1 = ys - wh[:, 1:2]
            x2 = xs + wh[:, 2:3]
            y2 = ys + wh[:, 3:4]
        else:
            x1 = xs - wh[:, 0:1] / 2
            y1 = ys - wh[:, 1:2] / 2
            x2 = xs + wh[:, 0:1] / 2
            y2 = ys + wh[:, 1:2] / 2
420
        n, c, feat_h, feat_w = paddle.shape(hm)
F
FlyingQianMM 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
        padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
        x1 = x1 * self.down_ratio
        y1 = y1 * self.down_ratio
        x2 = x2 * self.down_ratio
        y2 = y2 * self.down_ratio
        x1 = x1 - padw
        y1 = y1 - padh
        x2 = x2 - padw
        y2 = y2 - padh
        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
F
Feng Ni 已提交
436
        boxes_shape = bboxes.shape[:]
F
FlyingQianMM 已提交
437 438
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
439

440
        results = paddle.concat([clses, scores, bboxes], axis=1)
441
        return results, paddle.shape(results)[0:1], inds, topk_clses, ys, xs
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476


@register
class DETRBBoxPostProcess(object):
    __shared__ = ['num_classes', 'use_focal_loss']
    __inject__ = []

    def __init__(self,
                 num_classes=80,
                 num_top_queries=100,
                 use_focal_loss=False):
        super(DETRBBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.num_top_queries = num_top_queries
        self.use_focal_loss = use_focal_loss

    def __call__(self, head_out, im_shape, scale_factor):
        """
        Decode the bbox.

        Args:
            head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
        Returns:
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [bs], and is N.
        """
        bboxes, logits, masks = head_out

        bbox_pred = bbox_cxcywh_to_xyxy(bboxes)
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
477 478 479
        img_h, img_w = paddle.split(origin_shape, 2, axis=-1)
        origin_shape = paddle.concat(
            [img_w, img_h, img_w, img_h], axis=-1).reshape([-1, 1, 4])
480 481 482 483 484
        bbox_pred *= origin_shape

        scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax(
            logits)[:, :, :-1]

485 486 487 488 489
        if not self.use_focal_loss:
            scores, labels = scores.max(-1), scores.argmax(-1)
            if scores.shape[1] > self.num_top_queries:
                scores, index = paddle.topk(
                    scores, self.num_top_queries, axis=-1)
490 491 492 493 494 495
                batch_ind = paddle.arange(
                    end=scores.shape[0]).unsqueeze(-1).tile(
                        [1, self.num_top_queries])
                index = paddle.stack([batch_ind, index], axis=-1)
                labels = paddle.gather_nd(labels, index)
                bbox_pred = paddle.gather_nd(bbox_pred, index)
496 497
        else:
            scores, index = paddle.topk(
498 499 500 501 502 503 504
                scores.flatten(1), self.num_top_queries, axis=-1)
            labels = index % self.num_classes
            index = index // self.num_classes
            batch_ind = paddle.arange(end=scores.shape[0]).unsqueeze(-1).tile(
                [1, self.num_top_queries])
            index = paddle.stack([batch_ind, index], axis=-1)
            bbox_pred = paddle.gather_nd(bbox_pred, index)
505 506 507 508 509 510 511 512 513 514 515

        bbox_pred = paddle.concat(
            [
                labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1),
                bbox_pred
            ],
            axis=-1)
        bbox_num = paddle.to_tensor(
            bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]])
        bbox_pred = bbox_pred.reshape([-1, 6])
        return bbox_pred, bbox_num
F
FL77N 已提交
516 517 518 519


@register
class SparsePostProcess(object):
U
ucsk 已提交
520
    __shared__ = ['num_classes', 'assign_on_cpu']
F
FL77N 已提交
521

U
ucsk 已提交
522 523 524 525 526
    def __init__(self,
                 num_proposals,
                 num_classes=80,
                 binary_thresh=0.5,
                 assign_on_cpu=False):
F
FL77N 已提交
527 528 529
        super(SparsePostProcess, self).__init__()
        self.num_classes = num_classes
        self.num_proposals = num_proposals
U
ucsk 已提交
530 531
        self.binary_thresh = binary_thresh
        self.assign_on_cpu = assign_on_cpu
F
FL77N 已提交
532

U
ucsk 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    def __call__(self, scores, bboxes, scale_factor, ori_shape, masks=None):
        assert len(scores) == len(bboxes) == \
               len(ori_shape) == len(scale_factor)
        device = paddle.device.get_device()
        batch_size = len(ori_shape)

        scores = F.sigmoid(scores)
        has_mask = masks is not None
        if has_mask:
            masks = F.sigmoid(masks)
            masks = masks.reshape([batch_size, -1, *masks.shape[1:]])

        bbox_pred = []
        mask_pred = [] if has_mask else None
        bbox_num = paddle.zeros([batch_size], dtype='int32')
        for i in range(batch_size):
            score = scores[i]
            bbox = bboxes[i]
            score, indices = score.flatten(0, 1).topk(
                self.num_proposals, sorted=False)
            label = indices % self.num_classes
            if has_mask:
                mask = masks[i]
                mask = mask.flatten(0, 1)[indices]

            H, W = ori_shape[i][0], ori_shape[i][1]
            bbox = bbox[paddle.cast(indices / self.num_classes, indices.dtype)]
            bbox /= scale_factor[i]
            bbox[:, 0::2] = paddle.clip(bbox[:, 0::2], 0, W)
            bbox[:, 1::2] = paddle.clip(bbox[:, 1::2], 0, H)

            keep = ((bbox[:, 2] - bbox[:, 0]).numpy() > 1.) & \
                   ((bbox[:, 3] - bbox[:, 1]).numpy() > 1.)
            if keep.sum() == 0:
                bbox = paddle.zeros([1, 6], dtype='float32')
                if has_mask:
                    mask = paddle.zeros([1, H, W], dtype='uint8')
F
FL77N 已提交
570
            else:
U
ucsk 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
                label = paddle.to_tensor(label.numpy()[keep]).astype(
                    'float32').unsqueeze(-1)
                score = paddle.to_tensor(score.numpy()[keep]).astype(
                    'float32').unsqueeze(-1)
                bbox = paddle.to_tensor(bbox.numpy()[keep]).astype('float32')
                if has_mask:
                    mask = paddle.to_tensor(mask.numpy()[keep]).astype(
                        'float32').unsqueeze(1)
                    mask = paste_mask(mask, bbox, H, W, self.assign_on_cpu)
                    mask = paddle.cast(mask >= self.binary_thresh, 'uint8')
                bbox = paddle.concat([label, score, bbox], axis=-1)

            bbox_num[i] = bbox.shape[0]
            bbox_pred.append(bbox)
            if has_mask:
                mask_pred.append(mask)

        bbox_pred = paddle.concat(bbox_pred)
        mask_pred = paddle.concat(mask_pred) if has_mask else None
F
FL77N 已提交
590

U
ucsk 已提交
591 592
        if self.assign_on_cpu:
            paddle.set_device(device)
F
FL77N 已提交
593

U
ucsk 已提交
594 595 596 597
        if has_mask:
            return bbox_pred, bbox_num, mask_pred
        else:
            return bbox_pred, bbox_num
F
FL77N 已提交
598

U
ucsk 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

def paste_mask(masks, boxes, im_h, im_w, assign_on_cpu=False):
    """
    Paste the mask prediction to the original image.
    """
    x0_int, y0_int = 0, 0
    x1_int, y1_int = im_w, im_h
    x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
    N = masks.shape[0]
    img_y = paddle.arange(y0_int, y1_int) + 0.5
    img_x = paddle.arange(x0_int, x1_int) + 0.5

    img_y = (img_y - y0) / (y1 - y0) * 2 - 1
    img_x = (img_x - x0) / (x1 - x0) * 2 - 1
    # img_x, img_y have shapes (N, w), (N, h)

    if assign_on_cpu:
        paddle.set_device('cpu')
    gx = img_x[:, None, :].expand(
        [N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
    gy = img_y[:, :, None].expand(
        [N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
    grid = paddle.stack([gx, gy], axis=3)
    img_masks = F.grid_sample(masks, grid, align_corners=False)
    return img_masks[:, 0]
M
Mark Ma 已提交
624 625


626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
def multiclass_nms(bboxs, num_classes, match_threshold=0.6, match_metric='iou'):
    final_boxes = []
    for c in range(num_classes):
        idxs = bboxs[:, 0] == c
        if np.count_nonzero(idxs) == 0: continue
        r = nms(bboxs[idxs, 1:], match_threshold, match_metric)
        final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1))
    return final_boxes


def nms(dets, match_threshold=0.6, match_metric='iou'):
    """ Apply NMS to avoid detecting too many overlapping bounding boxes.
        Args:
            dets: shape [N, 5], [score, x1, y1, x2, y2]
            match_metric: 'iou' or 'ios'
            match_threshold: overlap thresh for match metric.
    """
M
Mark Ma 已提交
643 644 645 646 647 648 649 650 651 652 653
    if dets.shape[0] == 0:
        return dets[[], :]
    scores = dets[:, 0]
    x1 = dets[:, 1]
    y1 = dets[:, 2]
    x2 = dets[:, 3]
    y2 = dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    ndets = dets.shape[0]
W
wangguanzhong 已提交
654
    suppressed = np.zeros((ndets), dtype=np.int32)
M
Mark Ma 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

    for _i in range(ndets):
        i = order[_i]
        if suppressed[i] == 1:
            continue
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):
            j = order[_j]
            if suppressed[j] == 1:
                continue
            xx1 = max(ix1, x1[j])
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
676 677 678 679 680 681 682 683 684
            if match_metric == 'iou':
                union = iarea + areas[j] - inter
                match_value = inter / union
            elif match_metric == 'ios':
                smaller = min(iarea, areas[j])
                match_value = inter / smaller
            else:
                raise ValueError()
            if match_value >= match_threshold:
M
Mark Ma 已提交
685 686 687 688
                suppressed[j] = 1
    keep = np.where(suppressed == 0)[0]
    dets = dets[keep, :]
    return dets