post_process.py 26.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
W
wangxinxin08 已提交
20
from ppdet.modeling.bbox_utils import nonempty_bbox
F
FlyingQianMM 已提交
21
from ppdet.modeling.layers import TTFBox
22
from .transformers import bbox_cxcywh_to_xyxy
W
wangguanzhong 已提交
23 24 25 26
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
27

28
__all__ = [
F
Feng Ni 已提交
29 30
    'BBoxPostProcess', 'MaskPostProcess', 'JDEBBoxPostProcess',
    'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess'
31
]
F
Feng Ni 已提交
32

Q
qingqing01 已提交
33 34

@register
G
Guanghua Yu 已提交
35
class BBoxPostProcess(object):
36
    __shared__ = ['num_classes', 'export_onnx', 'export_eb']
Q
qingqing01 已提交
37 38
    __inject__ = ['decode', 'nms']

F
Feng Ni 已提交
39 40 41 42 43 44
    def __init__(self,
                 num_classes=80,
                 decode=None,
                 nms=None,
                 export_onnx=False,
                 export_eb=False):
Q
qingqing01 已提交
45
        super(BBoxPostProcess, self).__init__()
46
        self.num_classes = num_classes
Q
qingqing01 已提交
47 48
        self.decode = decode
        self.nms = nms
49
        self.export_onnx = export_onnx
50
        self.export_eb = export_eb
Q
qingqing01 已提交
51

G
Guanghua Yu 已提交
52
    def __call__(self, head_out, rois, im_shape, scale_factor):
53
        """
G
Guanghua Yu 已提交
54
        Decode the bbox and do NMS if needed.
55

F
Feng Ni 已提交
56 57 58 59 60
        Args:
            head_out (tuple): bbox_pred and cls_prob of bbox_head output.
            rois (tuple): roi and rois_num of rpn_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
61
            export_onnx (bool): whether export model to onnx
62
        Returns:
F
Feng Ni 已提交
63 64 65 66 67
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
68
        """
F
Feng Ni 已提交
69 70
        if self.nms is not None:
            bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
71
            bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
72

F
Feng Ni 已提交
73 74 75
        else:
            bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
                                              scale_factor)
76 77 78 79 80 81 82 83 84 85

        if self.export_onnx:
            # add fake box after postprocess when exporting onnx 
            fake_bboxes = paddle.to_tensor(
                np.array(
                    [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))

            bbox_pred = paddle.concat([bbox_pred, fake_bboxes])
            bbox_num = bbox_num + 1

Q
qingqing01 已提交
86 87
        return bbox_pred, bbox_num

88 89 90
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
        """
        Rescale, clip and filter the bbox from the output of NMS to 
F
Feng Ni 已提交
91
        get final prediction. 
G
Guanghua Yu 已提交
92

F
Feng Ni 已提交
93 94
        Notes:
        Currently only support bs = 1.
95 96

        Args:
G
Guanghua Yu 已提交
97
            bboxes (Tensor): The output bboxes with shape [N, 6] after decode
F
Feng Ni 已提交
98 99 100 101 102
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
103
        Returns:
F
Feng Ni 已提交
104 105
            pred_result (Tensor): The final prediction results with shape [N, 6]
                including labels, scores and bboxes.
106
        """
107 108 109 110
        if self.export_eb:
            # enable rcnn models for edgeboard hw to skip the following postprocess.
            return bboxes, bboxes, bbox_num

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        if not self.export_onnx:
            bboxes_list = []
            bbox_num_list = []
            id_start = 0
            fake_bboxes = paddle.to_tensor(
                np.array(
                    [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
            fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))

            # add fake bbox when output is empty for each batch
            for i in range(bbox_num.shape[0]):
                if bbox_num[i] == 0:
                    bboxes_i = fake_bboxes
                    bbox_num_i = fake_bbox_num
                else:
                    bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
                    bbox_num_i = bbox_num[i]
                    id_start += bbox_num[i]
                bboxes_list.append(bboxes_i)
                bbox_num_list.append(bbox_num_i)
            bboxes = paddle.concat(bboxes_list)
            bbox_num = paddle.concat(bbox_num_list)
W
wangguanzhong 已提交
133

134 135
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        if not self.export_onnx:
            origin_shape_list = []
            scale_factor_list = []
            # scale_factor: scale_y, scale_x
            for i in range(bbox_num.shape[0]):
                expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                             [bbox_num[i], 2])
                scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
                scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
                expand_scale = paddle.expand(scale, [bbox_num[i], 4])
                origin_shape_list.append(expand_shape)
                scale_factor_list.append(expand_scale)

            self.origin_shape_list = paddle.concat(origin_shape_list)
            scale_factor_list = paddle.concat(scale_factor_list)

        else:
            # simplify the computation for bs=1 when exporting onnx
            scale_y, scale_x = scale_factor[0][0], scale_factor[0][1]
            scale = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y]).unsqueeze(0)
            self.origin_shape_list = paddle.expand(origin_shape,
                                                   [bbox_num[0], 2])
            scale_factor_list = paddle.expand(scale, [bbox_num[0], 4])
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

        # bboxes: [N, 6], label, score, bbox
        pred_label = bboxes[:, 0:1]
        pred_score = bboxes[:, 1:2]
        pred_bbox = bboxes[:, 2:]
        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = self.origin_shape_list[:, 0]
        origin_w = self.origin_shape_list[:, 1]
        zeros = paddle.zeros_like(origin_h)
        # clip bbox to [0, original_size]
        x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
        pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        # filter empty bbox
        keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
        keep_mask = paddle.unsqueeze(keep_mask, [1])
        pred_label = paddle.where(keep_mask, pred_label,
                                  paddle.ones_like(pred_label) * -1)
        pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
W
wangguanzhong 已提交
182
        return bboxes, pred_result, bbox_num
183 184 185 186

    def get_origin_shape(self, ):
        return self.origin_shape_list

Q
qingqing01 已提交
187 188 189

@register
class MaskPostProcess(object):
190
    __shared__ = ['export_onnx', 'assign_on_cpu']
W
wangguanzhong 已提交
191 192 193 194 195 196 197
    """
    refer to:
    https://github.com/facebookresearch/detectron2/layers/mask_ops.py

    Get Mask output according to the output from model
    """

198 199 200 201
    def __init__(self,
                 binary_thresh=0.5,
                 export_onnx=False,
                 assign_on_cpu=False):
Q
qingqing01 已提交
202 203
        super(MaskPostProcess, self).__init__()
        self.binary_thresh = binary_thresh
W
wangguanzhong 已提交
204
        self.export_onnx = export_onnx
205
        self.assign_on_cpu = assign_on_cpu
Q
qingqing01 已提交
206

207
    def paste_mask(self, masks, boxes, im_h, im_w):
F
Feng Ni 已提交
208 209 210
        """
        Paste the mask prediction to the original image.
        """
211 212
        x0_int, y0_int = 0, 0
        x1_int, y1_int = im_w, im_h
213
        x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
214 215 216
        N = masks.shape[0]
        img_y = paddle.arange(y0_int, y1_int) + 0.5
        img_x = paddle.arange(x0_int, x1_int) + 0.5
W
wangguanzhong 已提交
217

218 219
        img_y = (img_y - y0) / (y1 - y0) * 2 - 1
        img_x = (img_x - x0) / (x1 - x0) * 2 - 1
220
        # img_x, img_y have shapes (N, w), (N, h)
221

222 223
        if self.assign_on_cpu:
            paddle.set_device('cpu')
224 225 226 227
        gx = img_x[:, None, :].expand(
            [N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
        gy = img_y[:, :, None].expand(
            [N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
228 229 230 231 232 233
        grid = paddle.stack([gx, gy], axis=3)
        img_masks = F.grid_sample(masks, grid, align_corners=False)
        return img_masks[:, 0]

    def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
        """
F
Feng Ni 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
        Decode the mask_out and paste the mask to the origin image.

        Args:
            mask_out (Tensor): mask_head output with shape [N, 28, 28].
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            origin_shape (Tensor): The origin shape of the input image, the tensor
                shape is [N, 2], and each row is [h, w].
        Returns:
            pred_result (Tensor): The final prediction mask results with shape
                [N, h, w] in binary mask style.
247 248
        """
        num_mask = mask_out.shape[0]
G
Guanghua Yu 已提交
249
        origin_shape = paddle.cast(origin_shape, 'int32')
250
        device = paddle.device.get_device()
W
wangguanzhong 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

        if self.export_onnx:
            h, w = origin_shape[0][0], origin_shape[0][1]
            mask_onnx = self.paste_mask(mask_out[:, None, :, :], bboxes[:, 2:],
                                        h, w)
            mask_onnx = mask_onnx >= self.binary_thresh
            pred_result = paddle.cast(mask_onnx, 'int32')

        else:
            max_h = paddle.max(origin_shape[:, 0])
            max_w = paddle.max(origin_shape[:, 1])
            pred_result = paddle.zeros(
                [num_mask, max_h, max_w], dtype='int32') - 1

            id_start = 0
            for i in range(paddle.shape(bbox_num)[0]):
                bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
                mask_out_i = mask_out[id_start:id_start + bbox_num[i], :, :]
                im_h = origin_shape[i, 0]
                im_w = origin_shape[i, 1]
                bbox_num_i = bbox_num[id_start]
                pred_mask = self.paste_mask(mask_out_i[:, None, :, :],
                                            bboxes_i[:, 2:], im_h, im_w)
                pred_mask = paddle.cast(pred_mask >= self.binary_thresh,
                                        'int32')
                pred_result[id_start:id_start + bbox_num[i], :im_h, :
                            im_w] = pred_mask
                id_start += bbox_num[i]
279
        if self.assign_on_cpu:
280
            paddle.set_device(device)
281

282
        return pred_result
F
Feng Ni 已提交
283 284


285
@register
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
class JDEBBoxPostProcess(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['decode', 'nms']

    def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True):
        super(JDEBBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.decode = decode
        self.nms = nms
        self.return_idx = return_idx

        self.fake_bbox_pred = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
        self.fake_nms_keep_idx = paddle.to_tensor(
            np.array(
                [[0]], dtype='int32'))

        self.fake_yolo_boxes_out = paddle.to_tensor(
            np.array(
                [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32'))
        self.fake_yolo_scores_out = paddle.to_tensor(
            np.array(
                [[[0.0]]], dtype='float32'))
        self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64'))

G
George Ni 已提交
313
    def forward(self, head_out, anchors):
314 315 316 317 318 319 320 321 322 323 324 325 326 327
        """
        Decode the bbox and do NMS for JDE model. 

        Args:
            head_out (list): Bbox_pred and cls_prob of bbox_head output.
            anchors (list): Anchors of JDE model.

        Returns:
            boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. 
            bbox_pred (Tensor): The output is the prediction with shape [N, 6]
                including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction of each batch with shape [N].
            nms_keep_idx (Tensor): The index of kept bboxes after NMS. 
        """
328
        boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors)
329

330 331 332 333 334 335 336 337 338 339 340 341 342 343
        if len(boxes_idx) == 0:
            boxes_idx = self.fake_boxes_idx
            yolo_boxes_out = self.fake_yolo_boxes_out
            yolo_scores_out = self.fake_yolo_scores_out
        else:
            yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx)
            # TODO: only support bs=1 now
            yolo_boxes_out = paddle.reshape(
                yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4])
            yolo_scores_out = paddle.reshape(
                yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)])
            boxes_idx = boxes_idx[:, 1:]

        if self.return_idx:
G
George Ni 已提交
344 345 346 347 348 349
            bbox_pred, bbox_num, nms_keep_idx = self.nms(
                yolo_boxes_out, yolo_scores_out, self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
                nms_keep_idx = self.fake_nms_keep_idx
350 351
            return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
        else:
G
George Ni 已提交
352 353 354 355 356 357
            bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out,
                                              self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
            return _, bbox_pred, bbox_num, _
F
FlyingQianMM 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376


@register
class CenterNetPostProcess(TTFBox):
    """
    Postprocess the model outputs to get final prediction:
        1. Do NMS for heatmap to get top `max_per_img` bboxes.
        2. Decode bboxes using center offset and box size.
        3. Rescale decoded bboxes reference to the origin image shape.

    Args:
        max_per_img(int): the maximum number of predicted objects in a image,
            500 by default.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        regress_ltrb (bool): whether to regress left/top/right/bottom or
            width/height for a box, true by default.
        for_mot (bool): whether return other features used in tracking model.
    """

W
wangguanzhong 已提交
377
    __shared__ = ['down_ratio', 'for_mot']
F
FlyingQianMM 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391

    def __init__(self,
                 max_per_img=500,
                 down_ratio=4,
                 regress_ltrb=True,
                 for_mot=False):
        super(TTFBox, self).__init__()
        self.max_per_img = max_per_img
        self.down_ratio = down_ratio
        self.regress_ltrb = regress_ltrb
        self.for_mot = for_mot

    def __call__(self, hm, wh, reg, im_shape, scale_factor):
        heat = self._simple_nms(hm)
392
        scores, inds, topk_clses, ys, xs = self._topk(heat)
F
Feng Ni 已提交
393 394
        scores = scores.unsqueeze(1)
        clses = topk_clses.unsqueeze(1)
F
FlyingQianMM 已提交
395 396 397 398

        reg_t = paddle.transpose(reg, [0, 2, 3, 1])
        # Like TTFBox, batch size is 1.
        # TODO: support batch size > 1
F
Feng Ni 已提交
399
        reg = paddle.reshape(reg_t, [-1, reg_t.shape[-1]])
F
FlyingQianMM 已提交
400 401 402 403 404 405 406
        reg = paddle.gather(reg, inds)
        xs = paddle.cast(xs, 'float32')
        ys = paddle.cast(ys, 'float32')
        xs = xs + reg[:, 0:1]
        ys = ys + reg[:, 1:2]

        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
F
Feng Ni 已提交
407
        wh = paddle.reshape(wh_t, [-1, wh_t.shape[-1]])
F
FlyingQianMM 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420
        wh = paddle.gather(wh, inds)

        if self.regress_ltrb:
            x1 = xs - wh[:, 0:1]
            y1 = ys - wh[:, 1:2]
            x2 = xs + wh[:, 2:3]
            y2 = ys + wh[:, 3:4]
        else:
            x1 = xs - wh[:, 0:1] / 2
            y1 = ys - wh[:, 1:2] / 2
            x2 = xs + wh[:, 0:1] / 2
            y2 = ys + wh[:, 1:2] / 2

421
        n, c, feat_h, feat_w = paddle.shape(hm)
F
FlyingQianMM 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
        padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
        x1 = x1 * self.down_ratio
        y1 = y1 * self.down_ratio
        x2 = x2 * self.down_ratio
        y2 = y2 * self.down_ratio

        x1 = x1 - padw
        y1 = y1 - padh
        x2 = x2 - padw
        y2 = y2 - padh

        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
F
Feng Ni 已提交
439
        boxes_shape = bboxes.shape[:]
F
FlyingQianMM 已提交
440 441
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
442
        results = paddle.concat([clses, scores, bboxes], axis=1)
F
FlyingQianMM 已提交
443
        if self.for_mot:
444
            return results, inds, topk_clses
F
FlyingQianMM 已提交
445
        else:
446
            return results, paddle.shape(results)[0:1], topk_clses
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481


@register
class DETRBBoxPostProcess(object):
    __shared__ = ['num_classes', 'use_focal_loss']
    __inject__ = []

    def __init__(self,
                 num_classes=80,
                 num_top_queries=100,
                 use_focal_loss=False):
        super(DETRBBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.num_top_queries = num_top_queries
        self.use_focal_loss = use_focal_loss

    def __call__(self, head_out, im_shape, scale_factor):
        """
        Decode the bbox.

        Args:
            head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
        Returns:
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [bs], and is N.
        """
        bboxes, logits, masks = head_out

        bbox_pred = bbox_cxcywh_to_xyxy(bboxes)
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
482 483 484
        img_h, img_w = paddle.split(origin_shape, 2, axis=-1)
        origin_shape = paddle.concat(
            [img_w, img_h, img_w, img_h], axis=-1).reshape([-1, 1, 4])
485 486 487 488 489
        bbox_pred *= origin_shape

        scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax(
            logits)[:, :, :-1]

490 491 492 493 494
        if not self.use_focal_loss:
            scores, labels = scores.max(-1), scores.argmax(-1)
            if scores.shape[1] > self.num_top_queries:
                scores, index = paddle.topk(
                    scores, self.num_top_queries, axis=-1)
495 496 497 498 499 500
                batch_ind = paddle.arange(
                    end=scores.shape[0]).unsqueeze(-1).tile(
                        [1, self.num_top_queries])
                index = paddle.stack([batch_ind, index], axis=-1)
                labels = paddle.gather_nd(labels, index)
                bbox_pred = paddle.gather_nd(bbox_pred, index)
501 502
        else:
            scores, index = paddle.topk(
503 504 505 506 507 508 509
                scores.flatten(1), self.num_top_queries, axis=-1)
            labels = index % self.num_classes
            index = index // self.num_classes
            batch_ind = paddle.arange(end=scores.shape[0]).unsqueeze(-1).tile(
                [1, self.num_top_queries])
            index = paddle.stack([batch_ind, index], axis=-1)
            bbox_pred = paddle.gather_nd(bbox_pred, index)
510 511 512 513 514 515 516 517 518 519 520

        bbox_pred = paddle.concat(
            [
                labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1),
                bbox_pred
            ],
            axis=-1)
        bbox_num = paddle.to_tensor(
            bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]])
        bbox_pred = bbox_pred.reshape([-1, 6])
        return bbox_pred, bbox_num
F
FL77N 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607


@register
class SparsePostProcess(object):
    __shared__ = ['num_classes']

    def __init__(self, num_proposals, num_classes=80):
        super(SparsePostProcess, self).__init__()
        self.num_classes = num_classes
        self.num_proposals = num_proposals

    def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh):
        """
        Arguments:
            box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
                The tensor predicts the classification probability for each proposal.
            box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
                The tensor predicts 4-vector (x,y,w,h) box
                regression values for every proposal
            scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of  per img
            img_whwh (Tensor): tensors of shape [batch_size, 4]
        Returns:
            bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values:
            [label, confidence, xmin, ymin, xmax, ymax]
            bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image.
        """
        assert len(box_cls) == len(scale_factor_wh) == len(img_whwh)

        img_wh = img_whwh[:, :2]

        scores = F.sigmoid(box_cls)
        labels = paddle.arange(0, self.num_classes). \
            unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1)

        classes_all = []
        scores_all = []
        boxes_all = []
        for i, (scores_per_image,
                box_pred_per_image) in enumerate(zip(scores, box_pred)):

            scores_per_image, topk_indices = scores_per_image.flatten(
                0, 1).topk(
                    self.num_proposals, sorted=False)
            labels_per_image = paddle.gather(labels, topk_indices, axis=0)

            box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile(
                [1, self.num_classes, 1]).reshape([-1, 4])
            box_pred_per_image = paddle.gather(
                box_pred_per_image, topk_indices, axis=0)

            classes_all.append(labels_per_image)
            scores_all.append(scores_per_image)
            boxes_all.append(box_pred_per_image)

        bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32")
        boxes_final = []

        for i in range(len(scale_factor_wh)):
            classes = classes_all[i]
            boxes = boxes_all[i]
            scores = scores_all[i]

            boxes[:, 0::2] = paddle.clip(
                boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0]
            boxes[:, 1::2] = paddle.clip(
                boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1]
            boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), (
                boxes[:, 3] - boxes[:, 1]).numpy()

            keep = (boxes_w > 1.) & (boxes_h > 1.)

            if (keep.sum() == 0):
                bboxes = paddle.zeros([1, 6]).astype("float32")
            else:
                boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32")
                classes = paddle.to_tensor(classes.numpy()[keep]).astype(
                    "float32").unsqueeze(-1)
                scores = paddle.to_tensor(scores.numpy()[keep]).astype(
                    "float32").unsqueeze(-1)

                bboxes = paddle.concat([classes, scores, boxes], axis=-1)

            boxes_final.append(bboxes)
            bbox_num[i] = bboxes.shape[0]

        bbox_pred = paddle.concat(boxes_final)
        return bbox_pred, bbox_num
M
Mark Ma 已提交
608 609


610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
def multiclass_nms(bboxs, num_classes, match_threshold=0.6, match_metric='iou'):
    final_boxes = []
    for c in range(num_classes):
        idxs = bboxs[:, 0] == c
        if np.count_nonzero(idxs) == 0: continue
        r = nms(bboxs[idxs, 1:], match_threshold, match_metric)
        final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1))
    return final_boxes


def nms(dets, match_threshold=0.6, match_metric='iou'):
    """ Apply NMS to avoid detecting too many overlapping bounding boxes.
        Args:
            dets: shape [N, 5], [score, x1, y1, x2, y2]
            match_metric: 'iou' or 'ios'
            match_threshold: overlap thresh for match metric.
    """
M
Mark Ma 已提交
627 628 629 630 631 632 633 634 635 636 637
    if dets.shape[0] == 0:
        return dets[[], :]
    scores = dets[:, 0]
    x1 = dets[:, 1]
    y1 = dets[:, 2]
    x2 = dets[:, 3]
    y2 = dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    ndets = dets.shape[0]
W
wangguanzhong 已提交
638
    suppressed = np.zeros((ndets), dtype=np.int32)
M
Mark Ma 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

    for _i in range(ndets):
        i = order[_i]
        if suppressed[i] == 1:
            continue
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):
            j = order[_j]
            if suppressed[j] == 1:
                continue
            xx1 = max(ix1, x1[j])
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
660 661 662 663 664 665 666 667 668
            if match_metric == 'iou':
                union = iarea + areas[j] - inter
                match_value = inter / union
            elif match_metric == 'ios':
                smaller = min(iarea, areas[j])
                match_value = inter / smaller
            else:
                raise ValueError()
            if match_value >= match_threshold:
M
Mark Ma 已提交
669 670 671 672
                suppressed[j] = 1
    keep = np.where(suppressed == 0)[0]
    dets = dets[keep, :]
    return dets