post_process.py 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
C
cnn 已提交
20
from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly, rbox2poly
F
FlyingQianMM 已提交
21
from ppdet.modeling.layers import TTFBox
W
wangguanzhong 已提交
22 23 24 25
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
26

27 28 29 30 31 32
__all__ = [
    'BBoxPostProcess',
    'MaskPostProcess',
    'FCOSPostProcess',
    'S2ANetBBoxPostProcess',
    'JDEBBoxPostProcess',
F
FlyingQianMM 已提交
33
    'CenterNetPostProcess',
34
]
F
Feng Ni 已提交
35

Q
qingqing01 已提交
36 37

@register
C
cnn 已提交
38
class BBoxPostProcess(nn.Layer):
39
    __shared__ = ['num_classes']
Q
qingqing01 已提交
40 41
    __inject__ = ['decode', 'nms']

42
    def __init__(self, num_classes=80, decode=None, nms=None):
Q
qingqing01 已提交
43
        super(BBoxPostProcess, self).__init__()
44
        self.num_classes = num_classes
Q
qingqing01 已提交
45 46
        self.decode = decode
        self.nms = nms
C
cnn 已提交
47 48
        self.fake_bboxes = paddle.to_tensor(
            np.array(
W
wangguanzhong 已提交
49
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
C
cnn 已提交
50
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
Q
qingqing01 已提交
51

C
cnn 已提交
52
    def forward(self, head_out, rois, im_shape, scale_factor):
53 54 55
        """
        Decode the bbox and do NMS if needed. 

F
Feng Ni 已提交
56 57 58 59 60
        Args:
            head_out (tuple): bbox_pred and cls_prob of bbox_head output.
            rois (tuple): roi and rois_num of rpn_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
61
        Returns:
F
Feng Ni 已提交
62 63 64 65 66
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
67
        """
F
Feng Ni 已提交
68 69
        if self.nms is not None:
            bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
70
            bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
F
Feng Ni 已提交
71 72 73
        else:
            bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
                                              scale_factor)
Q
qingqing01 已提交
74 75
        return bbox_pred, bbox_num

76 77 78
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
        """
        Rescale, clip and filter the bbox from the output of NMS to 
F
Feng Ni 已提交
79 80 81 82
        get final prediction. 
        
        Notes:
        Currently only support bs = 1.
83 84

        Args:
G
Guanghua Yu 已提交
85
            bboxes (Tensor): The output bboxes with shape [N, 6] after decode
F
Feng Ni 已提交
86 87 88 89 90
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
91
        Returns:
F
Feng Ni 已提交
92 93
            pred_result (Tensor): The final prediction results with shape [N, 6]
                including labels, scores and bboxes.
94
        """
W
wangguanzhong 已提交
95 96

        if bboxes.shape[0] == 0:
C
cnn 已提交
97 98
            bboxes = self.fake_bboxes
            bbox_num = self.fake_bbox_num
W
wangguanzhong 已提交
99

100 101 102 103 104 105 106 107
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
G
Guanghua Yu 已提交
108
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
            scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
            expand_scale = paddle.expand(scale, [bbox_num[i], 4])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        self.origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 6], label, score, bbox
        pred_label = bboxes[:, 0:1]
        pred_score = bboxes[:, 1:2]
        pred_bbox = bboxes[:, 2:]
        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = self.origin_shape_list[:, 0]
        origin_w = self.origin_shape_list[:, 1]
        zeros = paddle.zeros_like(origin_h)
        # clip bbox to [0, original_size]
        x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
        pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        # filter empty bbox
        keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
        keep_mask = paddle.unsqueeze(keep_mask, [1])
        pred_label = paddle.where(keep_mask, pred_label,
                                  paddle.ones_like(pred_label) * -1)
        pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
        return pred_result

    def get_origin_shape(self, ):
        return self.origin_shape_list

Q
qingqing01 已提交
143 144 145

@register
class MaskPostProcess(object):
146
    def __init__(self, binary_thresh=0.5):
Q
qingqing01 已提交
147 148 149
        super(MaskPostProcess, self).__init__()
        self.binary_thresh = binary_thresh

150
    def paste_mask(self, masks, boxes, im_h, im_w):
F
Feng Ni 已提交
151 152 153
        """
        Paste the mask prediction to the original image.
        """
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
        masks = paddle.unsqueeze(masks, [0, 1])
        img_y = paddle.arange(0, im_h, dtype='float32') + 0.5
        img_x = paddle.arange(0, im_w, dtype='float32') + 0.5
        img_y = (img_y - y0) / (y1 - y0) * 2 - 1
        img_x = (img_x - x0) / (x1 - x0) * 2 - 1
        img_x = paddle.unsqueeze(img_x, [1])
        img_y = paddle.unsqueeze(img_y, [2])
        N = boxes.shape[0]

        gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]])
        gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]])
        grid = paddle.stack([gx, gy], axis=3)
        img_masks = F.grid_sample(masks, grid, align_corners=False)
        return img_masks[:, 0]

    def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
        """
F
Feng Ni 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184
        Decode the mask_out and paste the mask to the origin image.

        Args:
            mask_out (Tensor): mask_head output with shape [N, 28, 28].
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            origin_shape (Tensor): The origin shape of the input image, the tensor
                shape is [N, 2], and each row is [h, w].
        Returns:
            pred_result (Tensor): The final prediction mask results with shape
                [N, h, w] in binary mask style.
185 186
        """
        num_mask = mask_out.shape[0]
G
Guanghua Yu 已提交
187 188
        origin_shape = paddle.cast(origin_shape, 'int32')
        # TODO: support bs > 1 and mask output dtype is bool
189
        pred_result = paddle.zeros(
G
Guanghua Yu 已提交
190
            [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32')
191
        if bbox_num == 1 and bboxes[0][0] == -1:
G
Guanghua Yu 已提交
192 193
            return pred_result

194
        # TODO: optimize chunk paste
G
Guanghua Yu 已提交
195
        pred_result = []
196
        for i in range(bboxes.shape[0]):
G
Guanghua Yu 已提交
197
            im_h, im_w = origin_shape[i][0], origin_shape[i][1]
198 199 200
            pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h,
                                        im_w)
            pred_mask = pred_mask >= self.binary_thresh
G
Guanghua Yu 已提交
201 202 203
            pred_mask = paddle.cast(pred_mask, 'int32')
            pred_result.append(pred_mask)
        pred_result = paddle.concat(pred_result)
204
        return pred_result
F
Feng Ni 已提交
205 206 207 208 209 210 211 212 213 214 215 216


@register
class FCOSPostProcess(object):
    __inject__ = ['decode', 'nms']

    def __init__(self, decode=None, nms=None):
        super(FCOSPostProcess, self).__init__()
        self.decode = decode
        self.nms = nms

    def __call__(self, fcos_head_outs, scale_factor):
F
Feng Ni 已提交
217 218 219
        """
        Decode the bbox and do NMS in FCOS.
        """
F
Feng Ni 已提交
220 221 222 223 224
        locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
        bboxes, score = self.decode(locations, cls_logits, bboxes_reg,
                                    centerness, scale_factor)
        bbox_pred, bbox_num, _ = self.nms(bboxes, score)
        return bbox_pred, bbox_num
C
cnn 已提交
225 226 227


@register
C
cnn 已提交
228
class S2ANetBBoxPostProcess(nn.Layer):
229
    __shared__ = ['num_classes']
C
cnn 已提交
230 231
    __inject__ = ['nms']

232
    def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None):
C
cnn 已提交
233
        super(S2ANetBBoxPostProcess, self).__init__()
234
        self.num_classes = num_classes
C
cnn 已提交
235 236 237 238
        self.nms_pre = nms_pre
        self.min_bbox_size = min_bbox_size
        self.nms = nms
        self.origin_shape_list = []
C
cnn 已提交
239 240 241 242 243
        self.fake_pred_cls_score_bbox = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
                dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
C
cnn 已提交
244

C
cnn 已提交
245
    def forward(self, pred_scores, pred_bboxes):
C
cnn 已提交
246 247 248 249 250 251
        """
        pred_scores : [N, M]  score
        pred_bboxes : [N, 5]  xc, yc, w, h, a
        im_shape : [N, 2]  im_shape
        scale_factor : [N, 2]  scale_factor
        """
C
cnn 已提交
252 253
        pred_ploys0 = rbox2poly(pred_bboxes)
        pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0)
C
cnn 已提交
254 255

        # pred_scores [NA, 16] --> [16, NA]
C
cnn 已提交
256 257
        pred_scores0 = paddle.transpose(pred_scores, [1, 0])
        pred_scores = paddle.unsqueeze(pred_scores0, axis=0)
C
cnn 已提交
258

259 260 261 262
        pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores,
                                                    self.num_classes)
        # Prevent empty bbox_pred from decode or NMS.
        # Bboxes and score before NMS may be empty due to the score threshold.
C
cnn 已提交
263 264 265 266 267 268
        if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[
                1] <= 1:
            pred_cls_score_bbox = self.fake_pred_cls_score_bbox
            bbox_num = self.fake_bbox_num

        pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10])
269
        return pred_cls_score_bbox, bbox_num
C
cnn 已提交
270

271
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
C
cnn 已提交
272 273 274 275
        """
        Rescale, clip and filter the bbox from the output of NMS to
        get final prediction.
        Args:
276
            bboxes(Tensor): bboxes [N, 10]
C
cnn 已提交
277 278 279 280 281 282 283 284 285 286
            bbox_num(Tensor): bbox_num
            im_shape(Tensor): [1 2]
            scale_factor(Tensor): [1 2]
        Returns:
            bbox_pred(Tensor): The output is the prediction with shape [N, 8]
                               including labels, scores and bboxes. The size of
                               bboxes are corresponding to the original image.
        """
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
            scale = paddle.concat([
                scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
                scale_y
            ])
            expand_scale = paddle.expand(scale, [bbox_num[i], 8])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 10], label, score, bbox
        pred_label_score = bboxes[:, 0:2]
C
cnn 已提交
307
        pred_bbox = bboxes[:, 2:]
308 309

        # rescale bbox to original image
C
cnn 已提交
310
        pred_bbox = pred_bbox.reshape([-1, 8])
311 312 313
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = origin_shape_list[:, 0]
        origin_w = origin_shape_list[:, 1]
C
cnn 已提交
314

315
        bboxes = scaled_bbox
C
cnn 已提交
316
        zeros = paddle.zeros_like(origin_h)
C
cnn 已提交
317 318 319 320 321 322 323 324
        x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
        y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
        x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
        y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
        x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
        y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
        x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
        y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
325 326 327
        pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
        pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
        return pred_result
328 329 330


@register
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
class JDEBBoxPostProcess(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['decode', 'nms']

    def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True):
        super(JDEBBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.decode = decode
        self.nms = nms
        self.return_idx = return_idx

        self.fake_bbox_pred = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
        self.fake_nms_keep_idx = paddle.to_tensor(
            np.array(
                [[0]], dtype='int32'))

        self.fake_yolo_boxes_out = paddle.to_tensor(
            np.array(
                [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32'))
        self.fake_yolo_scores_out = paddle.to_tensor(
            np.array(
                [[[0.0]]], dtype='float32'))
        self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64'))

G
George Ni 已提交
358
    def forward(self, head_out, anchors):
359 360 361 362 363 364 365 366 367 368 369 370 371 372
        """
        Decode the bbox and do NMS for JDE model. 

        Args:
            head_out (list): Bbox_pred and cls_prob of bbox_head output.
            anchors (list): Anchors of JDE model.

        Returns:
            boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. 
            bbox_pred (Tensor): The output is the prediction with shape [N, 6]
                including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction of each batch with shape [N].
            nms_keep_idx (Tensor): The index of kept bboxes after NMS. 
        """
373
        boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors)
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388
        if len(boxes_idx) == 0:
            boxes_idx = self.fake_boxes_idx
            yolo_boxes_out = self.fake_yolo_boxes_out
            yolo_scores_out = self.fake_yolo_scores_out
        else:
            yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx)
            # TODO: only support bs=1 now
            yolo_boxes_out = paddle.reshape(
                yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4])
            yolo_scores_out = paddle.reshape(
                yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)])
            boxes_idx = boxes_idx[:, 1:]

        if self.return_idx:
G
George Ni 已提交
389 390 391 392 393 394
            bbox_pred, bbox_num, nms_keep_idx = self.nms(
                yolo_boxes_out, yolo_scores_out, self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
                nms_keep_idx = self.fake_nms_keep_idx
395 396
            return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
        else:
G
George Ni 已提交
397 398 399 400 401 402
            bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out,
                                              self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
            return _, bbox_pred, bbox_num, _
F
FlyingQianMM 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466


@register
class CenterNetPostProcess(TTFBox):
    """
    Postprocess the model outputs to get final prediction:
        1. Do NMS for heatmap to get top `max_per_img` bboxes.
        2. Decode bboxes using center offset and box size.
        3. Rescale decoded bboxes reference to the origin image shape.

    Args:
        max_per_img(int): the maximum number of predicted objects in a image,
            500 by default.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        regress_ltrb (bool): whether to regress left/top/right/bottom or
            width/height for a box, true by default.
        for_mot (bool): whether return other features used in tracking model.

    """

    __shared__ = ['down_ratio']

    def __init__(self,
                 max_per_img=500,
                 down_ratio=4,
                 regress_ltrb=True,
                 for_mot=False):
        super(TTFBox, self).__init__()
        self.max_per_img = max_per_img
        self.down_ratio = down_ratio
        self.regress_ltrb = regress_ltrb
        self.for_mot = for_mot

    def __call__(self, hm, wh, reg, im_shape, scale_factor):
        heat = self._simple_nms(hm)
        scores, inds, clses, ys, xs = self._topk(heat)
        scores = paddle.tensor.unsqueeze(scores, [1])
        clses = paddle.tensor.unsqueeze(clses, [1])

        reg_t = paddle.transpose(reg, [0, 2, 3, 1])
        # Like TTFBox, batch size is 1.
        # TODO: support batch size > 1
        reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]])
        reg = paddle.gather(reg, inds)
        xs = paddle.cast(xs, 'float32')
        ys = paddle.cast(ys, 'float32')
        xs = xs + reg[:, 0:1]
        ys = ys + reg[:, 1:2]

        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
        wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
        wh = paddle.gather(wh, inds)

        if self.regress_ltrb:
            x1 = xs - wh[:, 0:1]
            y1 = ys - wh[:, 1:2]
            x2 = xs + wh[:, 2:3]
            y2 = ys + wh[:, 3:4]
        else:
            x1 = xs - wh[:, 0:1] / 2
            y1 = ys - wh[:, 1:2] / 2
            x2 = xs + wh[:, 0:1] / 2
            y2 = ys + wh[:, 1:2] / 2

467
        n, c, feat_h, feat_w = hm.shape[:]
F
FlyingQianMM 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
        padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
        padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
        x1 = x1 * self.down_ratio
        y1 = y1 * self.down_ratio
        x2 = x2 * self.down_ratio
        y2 = y2 * self.down_ratio

        x1 = x1 - padw
        y1 = y1 - padh
        x2 = x2 - padw
        y2 = y2 - padh

        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
        boxes_shape = paddle.shape(bboxes)
        boxes_shape.stop_gradient = True
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
        if self.for_mot:
            results = paddle.concat([bboxes, scores, clses], axis=1)
            return results, inds
        else:
            results = paddle.concat([clses, scores, bboxes], axis=1)
            return results, paddle.shape(results)[0:1]