pipeline.py 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
23
import copy
Z
zhiboniu 已提交
24
from collections import Sequence, defaultdict
Z
zhiboniu 已提交
25
from datacollector import DataCollector, Result
26 27 28 29 30

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

31 32
from cfg_utils import argsparser, print_arguments, merge_cfg
from pipe_utils import PipeTimer
Z
zhiboniu 已提交
33 34
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint

35
from python.infer import Detector, DetectorPicoDet
J
JYChen 已提交
36 37
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
38
from python.preprocess import decode_image, ShortSizeScale
Z
zhiboniu 已提交
39
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action, visualize_vehicleplate
40 41

from pptracking.python.mot_sde_infer import SDE_Detector
42 43
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
44

Z
zhiboniu 已提交
45 46 47 48 49 50 51
from pphuman.attr_infer import AttrDetector
from pphuman.video_action_infer import VideoActionRecognizer
from pphuman.action_infer import SkeletonActionRecognizer, DetActionRecognizer, ClsActionRecognizer
from pphuman.action_utils import KeyPointBuff, ActionVisualHelper
from pphuman.reid import ReID
from pphuman.mtmct import mtmct_process

52 53 54
from ppvehicle.vehicle_plate import PlateRecognizer
from ppvehicle.vehicle_attr import VehicleAttr

55 56
from download import auto_download_model

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
81 82 83
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
84
            or getting out from the entrance, default as False, only support single class
85
            counting in MOT.
86 87
    """

Z
zhiboniu 已提交
88
    def __init__(self, args, cfg):
89
        self.multi_camera = False
Z
zhiboniu 已提交
90 91
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
92
        self.is_video = False
Z
zhiboniu 已提交
93
        self.output_dir = args.output_dir
Z
zhiboniu 已提交
94
        self.vis_result = cfg['visual']
Z
zhiboniu 已提交
95 96 97
        self.input = self._parse_input(args.image_file, args.image_dir,
                                       args.video_file, args.video_dir,
                                       args.camera_id)
98
        if self.multi_camera:
99 100 101
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
Z
zhiboniu 已提交
102
                    args, cfg, is_video=True, multi_camera=True)
103 104 105
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

106
        else:
Z
zhiboniu 已提交
107
            self.predictor = PipePredictor(args, cfg, self.is_video)
108
            if self.is_video:
Z
zhiboniu 已提交
109
                self.predictor.set_file_name(args.video_file)
110

Z
zhiboniu 已提交
111 112 113 114
        self.output_dir = args.output_dir
        self.draw_center_traj = args.draw_center_traj
        self.secs_interval = args.secs_interval
        self.do_entrance_counting = args.do_entrance_counting
115 116 117 118 119 120 121
        self.do_break_in_counting = args.do_break_in_counting
        self.region_type = args.region_type
        self.region_polygon = args.region_polygon
        if self.region_type == 'custom':
            assert len(
                self.region_polygon
            ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'
122

Z
zhiboniu 已提交
123 124
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
125 126 127 128 129 130 131 132 133

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
Z
zhiboniu 已提交
134 135 136
            assert os.path.exists(
                video_file
            ) or 'rtsp' in video_file, "video_file not exists and not an rtsp site."
Z
zhiboniu 已提交
137 138 139 140 141 142 143
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
144
                self.multi_camera = True
Z
zhiboniu 已提交
145 146
                videof.sort()
                input = videof
147
            else:
Z
zhiboniu 已提交
148
                input = videof[0]
149 150 151
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
152 153
            self.multi_camera = False
            input = camera_id
154 155 156 157
            self.is_video = True

        else:
            raise ValueError(
158
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
159 160 161 162 163 164 165 166 167
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
168 169
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
170 171 172 173 174 175
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
176 177 178 179 180

        else:
            self.predictor.run(self.input)


181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
def get_model_dir(cfg):
    # auto download inference model
    model_dir_dict = {}
    for key in cfg.keys():
        if type(cfg[key]) ==  dict and \
            ("enable" in cfg[key].keys() and cfg[key]['enable']
                or "enable" not in cfg[key].keys()):

            if "model_dir" in cfg[key].keys():
                model_dir = cfg[key]["model_dir"]
                downloaded_model_dir = auto_download_model(model_dir)
                if downloaded_model_dir:
                    model_dir = downloaded_model_dir
                model_dir_dict[key] = model_dir
                print(key, " model dir:", model_dir)
            elif key == "VEHICLE_PLATE":
                det_model_dir = cfg[key]["det_model_dir"]
                downloaded_det_model_dir = auto_download_model(det_model_dir)
                if downloaded_det_model_dir:
                    det_model_dir = downloaded_det_model_dir
                model_dir_dict["det_model_dir"] = det_model_dir
                print("det_model_dir model dir:", det_model_dir)

                rec_model_dir = cfg[key]["rec_model_dir"]
                downloaded_rec_model_dir = auto_download_model(rec_model_dir)
                if downloaded_rec_model_dir:
                    rec_model_dir = downloaded_rec_model_dir
                model_dir_dict["rec_model_dir"] = rec_model_dir
                print("rec_model_dir model dir:", rec_model_dir)
        elif key == "MOT":  # for idbased and skeletonbased actions
            model_dir = cfg[key]["model_dir"]
            downloaded_model_dir = auto_download_model(model_dir)
            if downloaded_model_dir:
                model_dir = downloaded_model_dir
            model_dir_dict[key] = model_dir

    return model_dir_dict


220 221 222 223 224 225 226 227 228 229 230 231 232
class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
233
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
234
        4. VideoAction Recognition
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
254 255 256
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
257
            or getting out from the entrance, default as False, only support single class
258
            counting in MOT.
259 260
    """

Z
zhiboniu 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273
    def __init__(self, args, cfg, is_video=True, multi_camera=False):
        device = args.device
        run_mode = args.run_mode
        trt_min_shape = args.trt_min_shape
        trt_max_shape = args.trt_max_shape
        trt_opt_shape = args.trt_opt_shape
        trt_calib_mode = args.trt_calib_mode
        cpu_threads = args.cpu_threads
        enable_mkldnn = args.enable_mkldnn
        output_dir = args.output_dir
        draw_center_traj = args.draw_center_traj
        secs_interval = args.secs_interval
        do_entrance_counting = args.do_entrance_counting
274 275 276
        do_break_in_counting = args.do_break_in_counting
        region_type = args.region_type
        region_polygon = args.region_polygon
Z
zhiboniu 已提交
277 278 279 280

        # general module for pphuman and ppvehicle
        self.with_mot = cfg.get('MOT', False)['enable'] if cfg.get(
            'MOT', False) else False
281
        self.with_human_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
Z
zhiboniu 已提交
282
            'ATTR', False) else False
Z
zhiboniu 已提交
283 284
        if self.with_mot:
            print('Multi-Object Tracking enabled')
285 286
        if self.with_human_attr:
            print('Human Attribute Recognition enabled')
Z
zhiboniu 已提交
287 288

        # only for pphuman
Z
zhiboniu 已提交
289 290 291
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
292 293 294 295 296 297 298 299 300
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
301 302
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
303

Z
zhiboniu 已提交
304 305
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
306 307 308 309 310 311
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
312 313
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
314

Z
zhiboniu 已提交
315 316 317 318 319 320 321
        # only for ppvehicle
        self.with_vehicleplate = cfg.get(
            'VEHICLE_PLATE', False)['enable'] if cfg.get('VEHICLE_PLATE',
                                                         False) else False
        if self.with_vehicleplate:
            print('Vehicle Plate Recognition enabled')

322 323 324 325 326 327
        self.with_vehicle_attr = cfg.get(
            'VEHICLE_ATTR', False)['enable'] if cfg.get('VEHICLE_ATTR',
                                                        False) else False
        if self.with_vehicle_attr:
            print('Vehicle Attribute Recognition enabled')

328 329 330 331 332 333
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
334

335 336 337 338 339 340 341 342 343 344 345 346
        self.basemode = {
            "MOT": "idbased",
            "ATTR": "idbased",
            "VIDEO_ACTION": "videobased",
            "SKELETON_ACTION": "skeletonbased",
            "ID_BASED_DETACTION": "idbased",
            "ID_BASED_CLSACTION": "idbased",
            "REID": "idbased",
            "VEHICLE_PLATE": "idbased",
            "VEHICLE_ATTR": "idbased",
        }

347 348 349 350
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
351 352 353
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
354 355 356
        self.do_break_in_counting = do_break_in_counting
        self.region_type = region_type
        self.region_polygon = region_polygon
357

J
JYChen 已提交
358
        self.warmup_frame = self.cfg['warmup_frame']
359 360
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
361
        self.file_name = None
Z
zhiboniu 已提交
362
        self.collector = DataCollector()
363

364 365 366
        # auto download inference model
        model_dir_dict = get_model_dir(self.cfg)

367 368
        if not is_video:
            det_cfg = self.cfg['DET']
369
            model_dir = model_dir_dict['DET']
370 371 372 373 374
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
375
            if self.with_human_attr:
376
                attr_cfg = self.cfg['ATTR']
377
                model_dir = model_dir_dict['ATTR']
378
                batch_size = attr_cfg['batch_size']
379
                basemode = self.basemode['ATTR']
380
                self.modebase[basemode] = True
381 382 383 384 385
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

386 387
            if self.with_vehicle_attr:
                vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
388
                model_dir = model_dir_dict['VEHICLE_ATTR']
389 390 391
                batch_size = vehicleattr_cfg['batch_size']
                color_threshold = vehicleattr_cfg['color_threshold']
                type_threshold = vehicleattr_cfg['type_threshold']
392
                basemode = self.basemode['VEHICLE_ATTR']
393 394 395 396 397 398
                self.modebase[basemode] = True
                self.vehicle_attr_predictor = VehicleAttr(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn, color_threshold, type_threshold)

399
        else:
400
            if self.with_human_attr:
401
                attr_cfg = self.cfg['ATTR']
402
                model_dir = model_dir_dict['ATTR']
403
                batch_size = attr_cfg['batch_size']
404
                basemode = self.basemode['ATTR']
405
                self.modebase[basemode] = True
406 407 408 409
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
Z
zhiboniu 已提交
410
            if self.with_idbased_detaction:
J
JYChen 已提交
411
                idbased_detaction_cfg = self.cfg['ID_BASED_DETACTION']
412
                model_dir = model_dir_dict['ID_BASED_DETACTION']
J
JYChen 已提交
413
                batch_size = idbased_detaction_cfg['batch_size']
414
                basemode = self.basemode['ID_BASED_DETACTION']
J
JYChen 已提交
415 416
                threshold = idbased_detaction_cfg['threshold']
                display_frames = idbased_detaction_cfg['display_frames']
417
                skip_frame_num = idbased_detaction_cfg['skip_frame_num']
J
JYChen 已提交
418
                self.modebase[basemode] = True
419

J
JYChen 已提交
420 421 422 423 424 425 426 427 428 429 430 431
                self.det_action_predictor = DetActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
432 433
                    display_frames=display_frames,
                    skip_frame_num=skip_frame_num)
J
JYChen 已提交
434 435
                self.det_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
436
            if self.with_idbased_clsaction:
J
JYChen 已提交
437
                idbased_clsaction_cfg = self.cfg['ID_BASED_CLSACTION']
438
                model_dir = model_dir_dict['ID_BASED_CLSACTION']
J
JYChen 已提交
439
                batch_size = idbased_clsaction_cfg['batch_size']
440
                basemode = self.basemode['ID_BASED_CLSACTION']
J
JYChen 已提交
441 442 443
                threshold = idbased_clsaction_cfg['threshold']
                self.modebase[basemode] = True
                display_frames = idbased_clsaction_cfg['display_frames']
444 445
                skip_frame_num = idbased_clsaction_cfg['skip_frame_num']

J
JYChen 已提交
446 447 448 449 450 451 452 453 454 455 456 457
                self.cls_action_predictor = ClsActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
458 459
                    display_frames=display_frames,
                    skip_frame_num=skip_frame_num)
J
JYChen 已提交
460 461
                self.cls_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
462 463
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
464
                skeleton_action_model_dir = model_dir_dict['SKELETON_ACTION']
Z
zhiboniu 已提交
465 466 467 468
                skeleton_action_batch_size = skeleton_action_cfg['batch_size']
                skeleton_action_frames = skeleton_action_cfg['max_frames']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
469
                basemode = self.basemode['SKELETON_ACTION']
470 471
                self.modebase[basemode] = True

Z
zhiboniu 已提交
472 473
                self.skeleton_action_predictor = SkeletonActionRecognizer(
                    skeleton_action_model_dir,
J
JYChen 已提交
474 475
                    device,
                    run_mode,
Z
zhiboniu 已提交
476
                    skeleton_action_batch_size,
J
JYChen 已提交
477 478 479 480 481 482
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
Z
zhiboniu 已提交
483
                    window_size=skeleton_action_frames)
J
JYChen 已提交
484
                self.skeleton_action_visual_helper = ActionVisualHelper(
Z
zhiboniu 已提交
485
                    display_frames)
486 487 488

                if self.modebase["skeletonbased"]:
                    kpt_cfg = self.cfg['KPT']
489
                    kpt_model_dir = model_dir_dict['KPT']
490 491 492 493 494 495 496 497 498 499 500 501 502
                    kpt_batch_size = kpt_cfg['batch_size']
                    self.kpt_predictor = KeyPointDetector(
                        kpt_model_dir,
                        device,
                        run_mode,
                        kpt_batch_size,
                        trt_min_shape,
                        trt_max_shape,
                        trt_opt_shape,
                        trt_calib_mode,
                        cpu_threads,
                        enable_mkldnn,
                        use_dark=False)
Z
zhiboniu 已提交
503
                    self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
504

Z
zhiboniu 已提交
505 506 507 508
            if self.with_vehicleplate:
                vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
                self.vehicleplate_detector = PlateRecognizer(args,
                                                             vehicleplate_cfg)
509
                basemode = self.basemode['VEHICLE_PLATE']
Z
zhiboniu 已提交
510 511
                self.modebase[basemode] = True

512 513
            if self.with_vehicle_attr:
                vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
514
                model_dir = model_dir_dict['VEHICLE_ATTR']
515 516 517
                batch_size = vehicleattr_cfg['batch_size']
                color_threshold = vehicleattr_cfg['color_threshold']
                type_threshold = vehicleattr_cfg['type_threshold']
518
                basemode = self.basemode['VEHICLE_ATTR']
519 520 521 522 523 524
                self.modebase[basemode] = True
                self.vehicle_attr_predictor = VehicleAttr(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn, color_threshold, type_threshold)

Z
zhiboniu 已提交
525 526
            if self.with_mtmct:
                reid_cfg = self.cfg['REID']
527
                model_dir = model_dir_dict['REID']
Z
zhiboniu 已提交
528
                batch_size = reid_cfg['batch_size']
529
                basemode = self.basemode['REID']
Z
zhiboniu 已提交
530 531 532 533 534 535
                self.modebase[basemode] = True
                self.reid_predictor = ReID(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

Z
zhiboniu 已提交
536 537 538
            if self.with_mot or self.modebase["idbased"] or self.modebase[
                    "skeletonbased"]:
                mot_cfg = self.cfg['MOT']
539
                model_dir = model_dir_dict['MOT']
Z
zhiboniu 已提交
540 541
                tracker_config = mot_cfg['tracker_config']
                batch_size = mot_cfg['batch_size']
542
                basemode = self.basemode['MOT']
Z
zhiboniu 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
                self.modebase[basemode] = True
                self.mot_predictor = SDE_Detector(
                    model_dir,
                    tracker_config,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    draw_center_traj=draw_center_traj,
                    secs_interval=secs_interval,
558 559 560 561
                    do_entrance_counting=do_entrance_counting,
                    do_break_in_counting=do_break_in_counting,
                    region_type=region_type,
                    region_polygon=region_polygon)
Z
zhiboniu 已提交
562

563 564 565
            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']

566
                basemode = self.basemode['VIDEO_ACTION']
567 568
                self.modebase[basemode] = True

569
                video_action_model_dir = model_dir_dict['VIDEO_ACTION']
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
                video_action_batch_size = video_action_cfg['batch_size']
                short_size = video_action_cfg["short_size"]
                target_size = video_action_cfg["target_size"]

                self.video_action_predictor = VideoActionRecognizer(
                    model_dir=video_action_model_dir,
                    short_size=short_size,
                    target_size=target_size,
                    device=device,
                    run_mode=run_mode,
                    batch_size=video_action_batch_size,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    trt_calib_mode=trt_calib_mode,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn)

588
    def set_file_name(self, path):
W
wangguanzhong 已提交
589 590 591 592 593
        if path is not None:
            self.file_name = os.path.split(path)[-1]
        else:
            # use camera id
            self.file_name = None
594

595
    def get_result(self):
Z
zhiboniu 已提交
596
        return self.collector.get_res()
597 598 599 600 601 602

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
603
        self.pipe_timer.info()
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
622 623
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
624 625 626 627
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

628
            if self.with_human_attr:
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
            if self.with_vehicle_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                vehicle_attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    vehicle_attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].end()

                attr_res = {'output': vehicle_attr_res_list}
                self.pipeline_res.update(attr_res, 'vehicle_attr')

664 665 666 667 668 669 670
            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
671
    def predict_video(self, video_file):
672 673 674
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
675
        capture = cv2.VideoCapture(video_file)
676
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
Z
zhiboniu 已提交
677 678
        if "rtsp" in video_file:
            video_out_name = video_out_name + "_rtsp.mp4"
679 680 681 682 683 684

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
685
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
686 687 688 689 690 691 692

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
693 694 695 696 697 698 699 700 701 702

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        if self.do_entrance_counting or self.do_break_in_counting:
            if self.region_type == 'horizontal':
                entrance = [0, height / 2., width, height / 2.]
            elif self.region_type == 'vertical':
                entrance = [width / 2, 0., width / 2, height]
            elif self.region_type == 'custom':
                entrance = []
                assert len(
                    self.region_polygon
                ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
                for i in range(0, len(self.region_polygon), 2):
                    entrance.append(
                        [self.region_polygon[i], self.region_polygon[i + 1]])
                entrance.append([width, height])
            else:
                raise ValueError("region_type:{} unsupported.".format(
                    self.region_type))

721 722
        video_fps = fps

723 724
        video_action_imgs = []

725 726 727 728
        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

729 730 731
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
732

733 734 735
            ret, frame = capture.read()
            if not ret:
                break
736
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
737

738
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
739
                if frame_id > self.warmup_frame:
740 741 742
                    self.pipe_timer.total_time.start()
                    self.pipe_timer.module_time['mot'].start()
                res = self.mot_predictor.predict_image(
743
                    [copy.deepcopy(frame_rgb)], visual=False)
744

J
JYChen 已提交
745
                if frame_id > self.warmup_frame:
746 747 748 749 750 751 752 753 754 755 756
                    self.pipe_timer.module_time['mot'].end()

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)

                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
                    mot_result, self.secs_interval, self.do_entrance_counting,
757 758 759
                    self.do_break_in_counting, self.region_type, video_fps,
                    entrance, id_set, interval_id_set, in_id_list, out_id_list,
                    prev_center, records)
760 761 762 763 764
                records = statistic['records']

                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
765
                    if frame_id > self.warmup_frame:
766 767 768 769 770 771 772 773 774
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id, fps,
                                                  entrance, records,
                                                  center_traj)  # visualize
                        writer.write(im)
                        if self.file_name is None:  # use camera_id
Z
zhiboniu 已提交
775
                            cv2.imshow('Paddle-Pipeline', im)
776 777 778 779 780
                            if cv2.waitKey(1) & 0xFF == ord('q'):
                                break
                    continue

                self.pipeline_res.update(mot_res, 'mot')
J
JYChen 已提交
781
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
782
                    frame_rgb, mot_res)
783

Z
zhiboniu 已提交
784
                if self.with_vehicleplate:
Z
zhiboniu 已提交
785 786
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].start()
Z
zhiboniu 已提交
787 788
                    plate_input, _, _ = crop_image_with_mot(
                        frame_rgb, mot_res, expand=False)
Z
zhiboniu 已提交
789
                    platelicense = self.vehicleplate_detector.get_platelicense(
Z
zhiboniu 已提交
790
                        plate_input)
Z
zhiboniu 已提交
791 792
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].end()
Z
zhiboniu 已提交
793 794
                    self.pipeline_res.update(platelicense, 'vehicleplate')

795
                if self.with_human_attr:
J
JYChen 已提交
796
                    if frame_id > self.warmup_frame:
797 798 799 800 801 802 803
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

804 805 806 807 808 809 810 811 812
                if self.with_vehicle_attr:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].start()
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].end()
                    self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
813
                if self.with_idbased_detaction:
J
JYChen 已提交
814 815 816 817 818 819 820 821 822 823
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].start()
                    det_action_res = self.det_action_predictor.predict(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].end()
                    self.pipeline_res.update(det_action_res, 'det_action')

                    if self.cfg['visual']:
                        self.det_action_visual_helper.update(det_action_res)
Z
zhiboniu 已提交
824 825

                if self.with_idbased_clsaction:
J
JYChen 已提交
826 827 828 829 830 831 832 833 834 835
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].start()
                    cls_action_res = self.cls_action_predictor.predict_with_mot(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].end()
                    self.pipeline_res.update(cls_action_res, 'cls_action')

                    if self.cfg['visual']:
                        self.cls_action_visual_helper.update(cls_action_res)
Z
zhiboniu 已提交
836

Z
zhiboniu 已提交
837
                if self.with_skeleton_action:
Z
zhiboniu 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()
851

Z
zhiboniu 已提交
852
                    self.pipeline_res.update(kpt_res, 'kpt')
853

Z
zhiboniu 已提交
854
                    self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
855 856 857
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
858
                    skeleton_action_res = {}
859 860
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
861 862
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
863 864
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
865 866 867 868
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
869
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
870 871 872
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
873 874

                    if self.cfg['visual']:
Z
zhiboniu 已提交
875 876
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
877 878 879

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
880
                        frame_rgb, mot_res)
881 882 883 884 885 886
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
887

888 889 890 891 892 893 894 895
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
896

Z
zhiboniu 已提交
897
            if self.with_video_action:
898 899 900 901 902 903 904 905 906 907 908 909 910
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
911
                    # Scale image
912
                    scaled_img = scale(frame_rgb)
913
                    video_action_imgs.append(scaled_img)
914 915 916 917 918 919 920 921 922 923 924 925 926 927

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {"class": classes[0], "score": scores[0]}
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip
Z
zhiboniu 已提交
928 929

            self.collector.append(frame_id, self.pipeline_res)
930 931 932 933 934 935 936

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
937 938
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
939 940
                                          fps, entrance, records,
                                          center_traj)  # visualize
941
                writer.write(im)
W
wangguanzhong 已提交
942
                if self.file_name is None:  # use camera_id
Z
zhiboniu 已提交
943
                    cv2.imshow('Paddle-Pipeline', im)
W
wangguanzhong 已提交
944 945
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
946 947 948 949

        writer.release()
        print('save result to {}'.format(out_path))

950 951 952 953 954 955 956 957
    def visualize_video(self,
                        image,
                        result,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
958
        mot_res = copy.deepcopy(result.get('mot'))
959 960
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
961
            scores = mot_res['boxes'][:, 2]
962 963 964 965 966 967
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
968
            scores = np.zeros([0])
969 970 971 972 973 974 975 976 977 978

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

F
Feng Ni 已提交
979 980 981 982 983 984 985 986 987
        if mot_res is not None:
            image = plot_tracking_dict(
                image,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
988
                ids2names=self.mot_predictor.pred_config.labels,
F
Feng Ni 已提交
989
                do_entrance_counting=self.do_entrance_counting,
990
                do_break_in_counting=self.do_break_in_counting,
F
Feng Ni 已提交
991 992 993
                entrance=entrance,
                records=records,
                center_traj=center_traj)
994

995 996 997 998 999 1000 1001 1002 1003
        human_attr_res = result.get('attr')
        if human_attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            human_attr_res = human_attr_res['output']
            image = visualize_attr(image, human_attr_res, boxes)
            image = np.array(image)

        vehicle_attr_res = result.get('vehicle_attr')
        if vehicle_attr_res is not None:
1004
            boxes = mot_res['boxes'][:, 1:]
1005 1006
            vehicle_attr_res = vehicle_attr_res['output']
            image = visualize_attr(image, vehicle_attr_res, boxes)
1007 1008
            image = np.array(image)

Z
zhiboniu 已提交
1009 1010 1011 1012 1013 1014 1015
        vehicleplate_res = result.get('vehicleplate')
        if vehicleplate_res:
            boxes = mot_res['boxes'][:, 1:]
            image = visualize_vehicleplate(image, vehicleplate_res['plate'],
                                           boxes)
            image = np.array(image)

J
JYChen 已提交
1016 1017 1018 1019 1020 1021 1022 1023
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

1024
        video_action_res = result.get('video_action')
J
JYChen 已提交
1025
        if video_action_res is not None:
1026 1027 1028
            video_action_score = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
1029 1030 1031
            mot_boxes = None
            if mot_res:
                mot_boxes = mot_res['boxes']
1032 1033
            image = visualize_action(
                image,
1034
                mot_boxes,
J
JYChen 已提交
1035
                action_visual_collector=None,
1036 1037 1038
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")
J
JYChen 已提交
1039

J
JYChen 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        visual_helper_for_display = []
        action_to_display = []

        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
            visual_helper_for_display.append(self.skeleton_action_visual_helper)
            action_to_display.append("Falling")

        det_action_res = result.get('det_action')
        if det_action_res is not None:
            visual_helper_for_display.append(self.det_action_visual_helper)
            action_to_display.append("Smoking")

        cls_action_res = result.get('cls_action')
        if cls_action_res is not None:
            visual_helper_for_display.append(self.cls_action_visual_helper)
            action_to_display.append("Calling")

        if len(visual_helper_for_display) > 0:
            image = visualize_action(image, mot_res['boxes'],
                                     visual_helper_for_display,
                                     action_to_display)

1063 1064 1065 1066 1067
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
1068 1069 1070
        human_attr_res = result.get('attr')
        vehicle_attr_res = result.get('vehicle_attr')

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
1082 1083
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
1084 1085 1086 1087 1088 1089 1090 1091 1092
            if human_attr_res is not None:
                human_attr_res_i = human_attr_res['output'][start_idx:start_idx
                                                            + boxes_num_i]
                im = visualize_attr(im, human_attr_res_i, det_res_i['boxes'])
            if vehicle_attr_res is not None:
                vehicle_attr_res_i = vehicle_attr_res['output'][
                    start_idx:start_idx + boxes_num_i]
                im = visualize_attr(im, vehicle_attr_res_i, det_res_i['boxes'])

1093 1094 1095 1096
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
1097
            cv2.imwrite(out_path, im)
1098 1099 1100 1101 1102
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
1103
    cfg = merge_cfg(FLAGS)  # use command params to update config
1104
    print_arguments(cfg)
1105

Z
zhiboniu 已提交
1106
    pipeline = Pipeline(FLAGS, cfg)
1107 1108 1109 1110 1111
    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
1112 1113

    # parse params from command
1114 1115 1116 1117 1118 1119 1120
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()