operator.h 17.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51

M
minqiyang 已提交
52 53
constexpr size_t kGradVarSuffixSize = 5U;

54
/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
65 66 67 68 69
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
70 71
}

M
minqiyang 已提交
72
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
73
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
74 75 76 77 78 79 80
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
}

Q
qiaolongfei 已提交
81
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
82 83
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
84

Q
Qiao Longfei 已提交
85
class OperatorBase;
86
class ExecutionContext;
87

X
Xin Pan 已提交
88 89
class RuntimeContext {
 public:
X
Xin Pan 已提交
90 91
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
92

X
Xin Pan 已提交
93 94 95 96
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
97 98 99 100
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
101
/**
X
Xin Pan 已提交
102
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
103 104 105 106 107 108
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
109 110
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
111

Q
Qiao Longfei 已提交
112 113
  virtual ~OperatorBase() {}

114
  /// Executor will call this interface function to Run an op.
115 116
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
117

T
typhoonzero 已提交
118 119 120
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

121 122 123
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
124

125 126
  virtual bool SupportGPU() const { return false; }

127 128
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
129
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
130 131
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
132 133
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
134 135 136
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
137

Y
Yu Yang 已提交
138 139
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
140

141
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
142
  //! Get a input with argument's name described in `op_proto`
143
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
144
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
145
  const std::vector<std::string>& Inputs(const std::string& name) const;
146
  //! Get all inputs variable names
Q
qijun 已提交
147 148
  std::vector<std::string> InputVars() const;

149
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
150
  //! Get a output with argument's name described in `op_proto`
151
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
152 153
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
154
  const std::vector<std::string>& Outputs(const std::string& name) const;
155
  //! Get all outputs variable names
Y
Yu Yang 已提交
156
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
157

158
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
159
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
160 161
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
162

163
  // Add the hooks
P
peizhilin 已提交
164 165
  virtual void PreHook(const Scope& scope, const platform::Place& place);
  virtual void PostHook(const Scope& scope, const platform::Place& place);
166

Q
qiaolongfei 已提交
167
 protected:
Q
Qiao Longfei 已提交
168
  std::string type_;
D
dongzhihong 已提交
169
  // NOTE: in case of OpGrad, inputs_ contains:
170
  // I (Inputs)
D
dongzhihong 已提交
171 172
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
173
  VariableNameMap inputs_;
Y
Yu Yang 已提交
174

D
dongzhihong 已提交
175 176
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
177
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
178
  AttributeMap attrs_;
179 180
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
181 182 183 184

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
185 186
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
187 188
};

189
class ExecutionContext {
Y
Yan Chunwei 已提交
190
 public:
191
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
192 193 194
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
195

Q
qiaolongfei 已提交
196 197 198 199
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
200
  template <typename T>
Y
Yu Yang 已提交
201 202
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
203 204
  }

205
  bool HasInput(const std::string& name) const;
206

207
  bool HasOutput(const std::string& name) const;
208

Y
Yu Yang 已提交
209
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
210
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
211 212
  }

Y
Yu Yang 已提交
213
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
214
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
215 216
  }

X
Xin Pan 已提交
217
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
218

X
Xin Pan 已提交
219
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
220

221 222
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
223 224 225 226
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
Y
Yan Chunwei 已提交
227
    std::vector<const Variable*> res;
X
Xin Pan 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    res.reserve(it->second.size());
    std::transform(it->second.begin(), it->second.end(),
                   std::back_inserter(res),
                   [this](Variable* var) { return var; });
    return res;
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
248
    res.reserve(names.size());
249 250
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
251 252
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
253
                   });
Y
Yan Chunwei 已提交
254 255 256
    return res;
  }

X
Xin Pan 已提交
257
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
258
    auto names = op_.Outputs(name);
259
    std::vector<Variable*> res;
260
    res.reserve(names.size());
261 262
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
263 264
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
265
                   });
Y
Yan Chunwei 已提交
266 267 268
    return res;
  }

269 270
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
271
    auto* var = InputVar(name);
272
    return var == nullptr ? nullptr : &var->Get<T>();
273 274 275 276
  }

  template <typename T>
  T* Output(const std::string& name) const {
277
    auto var = OutputVar(name);
278
    return var == nullptr ? nullptr : var->GetMutable<T>();
279 280
  }

X
Xin Pan 已提交
281
  template <typename T>
X
clean  
Xin Pan 已提交
282 283
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
284 285 286 287
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
288 289
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
290 291 292
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
293
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
294

X
clean  
Xin Pan 已提交
295
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
296

297 298
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
331 332 333 334
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
335
                   [&](const std::string& sub_name) -> const T* {
336
                     auto var = scope_.FindVar(sub_name);
337
                     return var == nullptr ? nullptr : &var->Get<T>();
338 339 340 341 342
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
343
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
344
    auto names = op_.Outputs(name);
345
    std::vector<T*> res;
346 347
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
348
                   [&](const std::string& sub_name) -> T* {
349
                     auto var = scope_.FindVar(sub_name);
350
                     return var == nullptr ? nullptr : var->GetMutable<T>();
351 352 353 354
                   });
    return res;
  }

355
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
356

Q
QI JUN 已提交
357 358 359 360 361
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

362
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
363
    return device_context_;
Q
qijun 已提交
364
  }
Q
qijun 已提交
365

Q
QI JUN 已提交
366 367 368 369 370 371 372 373
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
374
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
375 376 377
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
378

D
dzhwinter 已提交
379
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
380 381 382 383
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
    auto tmp_allocation_ptr = platform::DeviceTemporaryAllocator::Instance()
                                  .Get<DevContext>(dev_ctx)
                                  .Allocate(product(dim) * sizeof(T));
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

    PADDLE_ENFORCE(
        dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
        "The AllocationPtr must be TemporaryAllocation.");
    PADDLE_ENFORCE_EQ(allocation_ptr->size(),
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

408
 private:
409 410
  const OperatorBase& op_;
  const Scope& scope_;
411
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
412
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
413 414
};

415 416 417
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
418
template <>
X
clean  
Xin Pan 已提交
419
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
420 421
    const std::string& name) const;

422 423 424 425
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
426 427 428 429
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

430 431 432
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
433
template <>
X
clean  
Xin Pan 已提交
434
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
435

436 437 438 439
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
440
class OpKernelBase {
Q
qijun 已提交
441
 public:
Q
qijun 已提交
442
  /**
443
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
444 445
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
446
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
447 448
   */

449
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
450

Y
Yu Yang 已提交
451 452 453 454 455 456 457
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
458 459
};

Y
Yu Yang 已提交
460 461
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
462
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
463
  using OpKernelMap =
Y
yuyang18 已提交
464
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
465

Y
Yu Yang 已提交
466 467
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
468 469
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
470 471 472 473
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
474
  }
Y
Yan Chunwei 已提交
475

476
  bool SupportGPU() const override {
Y
Yu Yang 已提交
477 478 479 480 481
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
482 483
  }

484 485 486
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
487

X
Xin Pan 已提交
488 489
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
490

491
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
492 493

 protected:
494 495 496
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
497 498

 private:
499
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
500
  // same.
501
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
502
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
503 504 505 506 507 508 509

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
510 511 512 513
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
514 515 516 517

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
518 519
};

Y
Yu Yang 已提交
520 521
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
522 523
}  // namespace framework
}  // namespace paddle