test_imperative_optimizer.py 7.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
18
import six
M
minqiyang 已提交
19

M
minqiyang 已提交
20
import paddle
M
minqiyang 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.optimizer import SGDOptimizer
24 25
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28


X
Xin Pan 已提交
29
class SimpleImgConvPool(fluid.imperative.Layer):
30 31
    def __init__(self,
                 num_channels,
32
                 num_filters,
M
minqiyang 已提交
33
                 filter_size,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__()

        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
68

69 70 71 72
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
73 74


X
Xin Pan 已提交
75
class MNIST(fluid.imperative.Layer):
76
    def __init__(self, param_attr=None, bias_attr=None):
M
minqiyang 已提交
77
        super(MNIST, self).__init__()
M
minqiyang 已提交
78

79
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
M
minqiyang 已提交
80
            1, 20, 5, 2, 2, act="relu")
81 82

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
M
minqiyang 已提交
83
            20, 50, 5, 2, 2, act="relu")
84

M
minqiyang 已提交
85
        pool_2_shape = 50 * 4 * 4
86 87
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
M
minqiyang 已提交
88
        self._fc = FC(10,
89 90
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
M
minqiyang 已提交
91 92
                              loc=0.0, scale=scale)),
                      act="softmax")
M
minqiyang 已提交
93 94

    def forward(self, inputs):
95 96
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
97
        x = self._fc(x)
M
minqiyang 已提交
98 99 100 101
        return x


class TestImperativeMnist(unittest.TestCase):
M
minqiyang 已提交
102
    def test_mnist_float32(self):
M
minqiyang 已提交
103
        seed = 90
M
minqiyang 已提交
104
        batch_num = 2
M
minqiyang 已提交
105
        with fluid.imperative.guard():
M
minqiyang 已提交
106 107 108
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
109
            mnist = MNIST()
M
minqiyang 已提交
110
            sgd = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
111 112 113
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128)

M
minqiyang 已提交
114
            dy_param_init_value = {}
M
minqiyang 已提交
115
            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
116
                if batch_id >= batch_num:
M
minqiyang 已提交
117 118
                    break

M
minqiyang 已提交
119
                dy_x_data = np.array(
M
minqiyang 已提交
120 121 122
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)
123

M
minqiyang 已提交
124
                img = to_variable(dy_x_data)
125 126 127
                label = to_variable(y_data)
                label._stop_gradient = True

M
minqiyang 已提交
128
                cost = mnist(img)
M
minqiyang 已提交
129 130
                loss = fluid.layers.cross_entropy(cost, label)
                avg_loss = fluid.layers.mean(loss)
M
minqiyang 已提交
131
                dy_out = avg_loss._numpy()
M
minqiyang 已提交
132

M
minqiyang 已提交
133 134 135 136 137
                if batch_id == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_init_value[param.name] = param._numpy()

M
minqiyang 已提交
138 139
                avg_loss._backward()
                sgd.minimize(avg_loss)
M
minqiyang 已提交
140
                mnist.clear_gradients()
M
minqiyang 已提交
141 142 143 144
                dy_param_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
145 146 147 148 149

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
150 151
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
M
minqiyang 已提交
152

M
minqiyang 已提交
153
            mnist = MNIST()
M
minqiyang 已提交
154 155 156 157 158 159 160 161
            sgd = SGDOptimizer(learning_rate=1e-3)
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
162 163
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
M
minqiyang 已提交
164
            sgd.minimize(avg_loss)
M
minqiyang 已提交
165 166

            # initialize params and fetch them
M
minqiyang 已提交
167
            static_param_init_value = {}
M
minqiyang 已提交
168 169 170 171 172 173 174 175 176
            static_param_name_list = []
            for param in fluid.default_startup_program().global_block(
            ).all_parameters():
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
M
minqiyang 已提交
177
                static_param_init_value[static_param_name_list[i]] = out[i]
M
minqiyang 已提交
178 179

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
180
                if batch_id >= batch_num:
M
minqiyang 已提交
181 182
                    break

M
minqiyang 已提交
183
                static_x_data = np.array(
M
minqiyang 已提交
184 185 186 187
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

M
minqiyang 已提交
188
                fetch_list = [avg_loss.name]
M
minqiyang 已提交
189 190
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
191
                              feed={"pixel": static_x_data,
M
minqiyang 已提交
192 193 194 195 196 197 198 199 200
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
201
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
M
minqiyang 已提交
202

M
minqiyang 已提交
203
        self.assertTrue(np.allclose(static_out, dy_out))
M
minqiyang 已提交
204

M
minqiyang 已提交
205
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
206
            self.assertTrue(np.allclose(value, dy_param_value[key]))
M
minqiyang 已提交
207 208 209 210


if __name__ == '__main__':
    unittest.main()