README.md 18.9 KB
Newer Older
G
Guanghua Yu 已提交
1
# PP-PicoDet
G
Guanghua Yu 已提交
2

G
Guanghua Yu 已提交
3
![](../../docs/images/picedet_demo.jpeg)
G
Guanghua Yu 已提交
4 5
## Introduction

6
We developed a series of lightweight models, named `PP-PicoDet`. Because of the excellent performance, our models are very suitable for deployment on mobile or CPU. For more details, please refer to our [report on arXiv](https://arxiv.org/abs/2111.00902).
G
Guanghua Yu 已提交
7

G
Guanghua Yu 已提交
8
- 🌟 Higher mAP: the **first** object detectors that surpass mAP(0.5:0.95) **30+** within 1M parameters when the input size is 416.
G
Guanghua Yu 已提交
9
- 🚀 Faster latency: 150FPS on mobile ARM CPU.
10
- 😊 Deploy friendly: support PaddleLite/MNN/NCNN/OpenVINO and provide C++/Python/Android implementation.
11
- 😍 Advanced algorithm: use the most advanced algorithms and offer innovation, such as ESNet, CSP-PAN, SimOTA with VFL, etc.
12

G
Guanghua Yu 已提交
13 14 15 16 17

<div align="center">
  <img src="../../docs/images/picodet_map.png" width='600'/>
</div>

18
### Comming Soon
G
Guanghua Yu 已提交
19 20 21
- [ ] More series of model, such as smaller or larger model.
- [ ] Pretrained models for more scenarios.
- [ ] More features in need.
G
Guanghua Yu 已提交
22

G
Guanghua Yu 已提交
23
## Benchmark
G
Guanghua Yu 已提交
24

25 26
| Model     | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) | Latency<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) |  Download  | Config |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- |
27 28 29 30 31 32 33
| PicoDet-S |  320*320   |          27.1           |        41.4        |        0.99        |       0.73        |              8.13               |            **6.65**             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_s_320_coco.yml) |
| PicoDet-S |  416*416   |          30.6           |        45.5        |        0.99        |       1.24        |              12.37              |            **9.82**             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_s_416_coco.yml) |
| PicoDet-M |  320*320   |          30.9           |        45.7        |        2.15        |       1.48        |              11.27              |            **9.61**             | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_m_320_coco.yml) |
| PicoDet-M |  416*416   |          34.3           |        49.8        |        2.15        |       2.50        |              17.39              |            **15.88**            | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_m_416_coco.yml) |
| PicoDet-L |  320*320   |          32.9           |        48.2        |        3.30        |       2.23        |              15.26              |            **13.42**            | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_l_320_coco.yml) |
| PicoDet-L |  416*416   |          36.6           |        52.5        |        3.30        |       3.76        |              23.36              |            **21.85**            | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_l_416_coco.yml) |
| PicoDet-L |  640*640   |          40.9           |        57.6        |        3.30        |       8.91        |              54.11              |            **50.55**            | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_l_640_coco.yml) |
34

35
#### More Configs
G
Guanghua Yu 已提交
36

37 38
| Model     | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) | Latency<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) |  Download  | Config |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- |
39 40 41
| PicoDet-Shufflenetv2 1x      |  416*416   |          30.0           |        44.6        |        1.17        |       1.53        |              15.06              |            **10.63**            |      [model](https://paddledet.bj.bcebos.com/models/picodet_shufflenetv2_1x_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_shufflenetv2_1x_416_coco.log)      | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/more_config/picodet_shufflenetv2_1x_416_coco.yml)      |
| PicoDet-MobileNetv3-large 1x |  416*416   |          35.6           |        52.0        |        3.55        |       2.80        |              20.71              |            **17.88**            | [model](https://paddledet.bj.bcebos.com/models/picodet_mobilenetv3_large_1x_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_mobilenetv3_large_1x_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/more_config/picodet_mobilenetv3_large_1x_416_coco.yml) |
| PicoDet-LCNet 1.5x           |  416*416   |          36.3           |        52.2        |        3.10        |       3.85        |              21.29              |            **20.8**             |           [model](https://paddledet.bj.bcebos.com/models/picodet_lcnet_1_5x_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_lcnet_1_5x_416_coco.log)           | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/more_config/picodet_lcnet_1_5x_416_coco.yml)           |
42

43

G
Guanghua Yu 已提交
44 45 46
<details open>
<summary><b>Table Notes:</b></summary>

G
Guanghua Yu 已提交
47
- <a name="latency">Latency:</a> All our models test on `Qualcomm Snapdragon 865(4xA77+4xA55)` with 4 threads by arm8 and with FP16. In the above table, test latency on [NCNN](https://github.com/Tencent/ncnn) and `Lite`->[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite).  And testing latency with code: [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark).
G
Guanghua Yu 已提交
48 49 50 51
- PicoDet is trained on COCO train2017 dataset and evaluated on COCO val2017.
- PicoDet used 4 or 8 GPUs for training and all checkpoints are trained with default settings and hyperparameters.

</details>
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#### Benchmark of Other Models

| Model     | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: |
| YOLOv3-Tiny |  416*416   |          16.6           |        33.1      |        8.86        |       5.62        |             25.42               |
| YOLOv4-Tiny |  416*416   |          21.7           |        40.2        |        6.06           |       6.96           |             23.69               |
| PP-YOLO-Tiny |  320*320       |          20.6         |        -              |   1.08             |    0.58             |    6.75                           |  
| PP-YOLO-Tiny |  416*416   |          22.7          |    -               |    1.08               |    1.02             |    10.48                          |  
| Nanodet-M |  320*320      |          20.6            |    -               |    0.95               |    0.72             |    8.71                           |  
| Nanodet-M |  416*416   |          23.5             |    -               |    0.95               |    1.2              |  13.35                          |
| Nanodet-M 1.5x |  416*416   |          26.8        |    -                  | 2.08               |    2.42             |    15.83                          |
| YOLOX-Nano     |  416*416   |          25.8          |    -               |    0.91               |    1.08             |    19.23                          |
| YOLOX-Tiny     |  416*416   |          32.8          |    -               |    5.06               |    6.45             |    32.77                          |
| YOLOv5n |  640*640       |          28.4             |    46.0            |    1.9                |    4.5              |    40.35                          |
| YOLOv5s |  640*640       |          37.2             |    56.0            |    7.2                |    16.5             |    78.05                          |

G
Guanghua Yu 已提交
69

G
Guanghua Yu 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
## Quick Start

<details open>
<summary>Requirements:</summary>

- PaddlePaddle >= 2.1.2

</details>

<details>
<summary>Installation</summary>

- [Installation guide](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/docs/tutorials/INSTALL.md)
- [Prepare dataset](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/docs/tutorials/PrepareDataSet_en.md)

</details>

<details>
<summary>Training and Evaluation</summary>

- Training model on single-GPU:

```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/picodet/picodet_s_320_coco.yml --eval
```

- Training model on multi-GPU:


```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/picodet/picodet_s_320_coco.yml --eval
```

- Evaluation:

```shell
python tools/eval.py -c configs/picodet/picodet_s_320_coco.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams
```

- Infer:

```shell
python tools/infer.py -c configs/picodet/picodet_s_320_coco.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams
```

Detail also can refer to [Quick start guide](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/docs/tutorials/GETTING_STARTED.md).

</details>


G
Guanghua Yu 已提交
126 127
## Deployment

128
### Export and Convert Model
G
Guanghua Yu 已提交
129 130

<details>
G
Guanghua Yu 已提交
131
<summary>1. Export model (click to expand)</summary>
G
Guanghua Yu 已提交
132 133 134 135 136 137 138 139 140 141

```shell
cd PaddleDetection
python tools/export_model.py -c configs/picodet/picodet_s_320_coco.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams --output_dir=inference_model
```

</details>

<details>
G
Guanghua Yu 已提交
142
<summary>2. Convert to PaddleLite (click to expand)</summary>
G
Guanghua Yu 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

- Install Paddlelite>=2.10.rc:

```shell
pip install paddlelite
```

- Convert model:

```shell
# FP32
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32
# FP16
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true
```

</details>

<details>
G
Guanghua Yu 已提交
162
<summary>3. Convert to ONNX (click to expand)</summary>
G
Guanghua Yu 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

- Install [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) >= 0.7 and ONNX > 1.10.1, for details, please refer to [Tutorials of Export ONNX Model](../../deploy/EXPORT_ONNX_MODEL.md)

```shell
pip install onnx
pip install paddle2onnx
```

- Convert model:

```shell
paddle2onnx --model_dir output_inference/picodet_s_320_coco/ \
            --model_filename model.pdmodel  \
            --params_filename model.pdiparams \
            --opset_version 11 \
            --save_file picodet_s_320_coco.onnx
```

- Simplify ONNX model: use onnx-simplifier to simplify onnx model.

  - Install onnx-simplifier >= 0.3.6:
  ```shell
  pip install onnx-simplifier
  ```
  - simplify onnx model:
  ```shell
  python -m onnxsim picodet_s_320_coco.onnx picodet_s_processed.onnx
  ```

</details>

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
- Deploy models

| Model     | Input size | ONNX  | Paddle Lite(fp32) | Paddle Lite(fp16) |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: |
| PicoDet-S |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_fp16.tar) |
| PicoDet-S |  416*416   |  [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_fp16.tar) |
| PicoDet-M |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_fp16.tar) |
| PicoDet-M |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_fp16.tar) |
| PicoDet-L |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_fp16.tar) |
| PicoDet-L |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) |
| PicoDet-L |  640*640   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_fp16.tar) |
| PicoDet-Shufflenetv2 1x      |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_shufflenetv2_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x_fp16.tar) |
| PicoDet-MobileNetv3-large 1x |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_mobilenetv3_large_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x_fp16.tar) |
| PicoDet-LCNet 1.5x           |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_lcnet_1_5x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x_fp16.tar) |


G
Guanghua Yu 已提交
210 211 212 213
### Deploy

- PaddleInference demo [Python](../../deploy/python) & [C++](../../deploy/cpp)
- [PaddleLite C++ demo](../../deploy/lite)
G
Guanghua Yu 已提交
214 215
- [NCNN C++/Python demo](../../deploy/third_engine/demo_ncnn)
- [MNN C++/Python demo](../../deploy/third_engine/demo_mnn)
G
Guanghua Yu 已提交
216
- [OpenVINO C++ demo](../../deploy/third_engine/demo_openvino)
G
Guanghua Yu 已提交
217 218 219
- [Android demo](https://github.com/JiweiMaster/PP-PicoDet-Android-Demo)


220
Android demo visualization:
G
Guanghua Yu 已提交
221 222 223 224
<div align="center">
  <img src="../../docs/images/picodet_android_demo1.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo2.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo3.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo4.jpg" height="500px" >
</div>

G
Guanghua Yu 已提交
225

226
## Quantization
G
Guanghua Yu 已提交
227

G
Guanghua Yu 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241
<details open>
<summary>Requirements:</summary>

- PaddlePaddle >= 2.2.0rc0
- PaddleSlim >= 2.2.0rc0

**Install:**

```shell
pip install paddleslim==2.2.0rc0
```

</details>

G
Guanghua Yu 已提交
242
<details>
G
Guanghua Yu 已提交
243
<summary>Quant aware (click to expand)</summary>
G
Guanghua Yu 已提交
244 245 246 247 248 249 250 251

Configure the quant config and start training:

```shell
python tools/train.py -c configs/picodet/picodet_s_320_coco.yml \
          --slim_config configs/slim/quant/picodet_s_quant.yml --eval
```

252 253
- More detail can refer to [slim document](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim)

G
Guanghua Yu 已提交
254 255 256
</details>

<details>
G
Guanghua Yu 已提交
257
<summary>Post quant (click to expand)</summary>
G
Guanghua Yu 已提交
258 259 260 261

Configure the post quant config and start calibrate model:

```shell
G
Guanghua Yu 已提交
262 263
python tools/post_quant.py -c configs/picodet/picodet_s_320_coco.yml \
          --slim_config configs/slim/post_quant/picodet_s_ptq.yml
G
Guanghua Yu 已提交
264 265
```

266
- Notes: Now the accuracy of post quant is abnormal and this problem is being solved.
G
Guanghua Yu 已提交
267

G
Guanghua Yu 已提交
268
</details>
G
Guanghua Yu 已提交
269

M
minghaoBD 已提交
270 271 272 273 274 275 276 277 278
## Unstructured Pruning

<details open>
<summary>Toturial:</summary>

Please refer this [documentation](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/README_PRUNER.md) for details such as requirements, training and deployment.

</details>

G
Guanghua Yu 已提交
279 280 281 282
## Application

- **Pedestrian detection:** model zoo of `PicoDet-S-Pedestrian` please refer to [PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/keypoint/tiny_pose#%E8%A1%8C%E4%BA%BA%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B)

283 284
- **Mainbody detection:** model zoo of `PicoDet-L-Mainbody` please refer to [mainbody detection](./application/mainbody_detection/README.md)

G
Guanghua Yu 已提交
285 286 287 288 289 290 291 292 293
## FAQ

<details>
<summary>Out of memory error.</summary>

Please reduce the `batch_size` of `TrainReader` in config.

</details>

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
<details>
<summary>How to transfer learning.</summary>

Please reset `pretrain_weights` in config, which trained on coco. Such as:
```yaml
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_l_640_coco.pdparams
```

</details>

<details>
<summary>The transpose operator is time-consuming on some hardware.</summary>

Please use `PicoDet-LCNet` model, which has fewer `transpose` operators.

</details>


G
Guanghua Yu 已提交
312 313
## Cite PP-PicoDet
If you use PicoDet in your research, please cite our work by using the following BibTeX entry:
G
Guanghua Yu 已提交
314
```
G
Guanghua Yu 已提交
315 316 317 318 319 320 321 322
@misc{yu2021pppicodet,
      title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
      author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
      year={2021},
      eprint={2111.00902},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
G
Guanghua Yu 已提交
323 324

```