(1) The DOTA dataset is trained together with train and val data as a training set, and the evaluation dataset configuration needs to be customized when evaluating the DOTA dataset.
(2) Bone dataset is transformed from segmented data. As there is little difference between different types of discs for detection tasks, and the score obtained by S2ANET algorithm is low, the default threshold for evaluation is 0.5, a low mAP is normal. You are advised to view the detection result visually.
...
...
@@ -152,8 +152,8 @@ Please refer to [DOTA_devkit](https://github.com/CAPTAIN-WHU/DOTA_devkit) genera
| Model | Conv Type | mAP | Model Download | Configuration File |
- We use a multi-scale evaluation strategy to get the mAP in `Easy/Medium/Hard Set`. Please refer to the [evaluation on the WIDER FACE dataset](#Evaluated-on-the-WIDER-FACE-Dataset) for details.
@@ -17,7 +17,7 @@ The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53
### 2. Configuration for training
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for pedestrian detection:
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for pedestrian detection:
| Backbone | Network type | Number of images per GPU | Learning rate strategy | Inferring time(fps) | Box AP | Mask AP | Download | Configuration File |
COCO数据集作为目标检测任务的训练目标难度更大,意味着teacher网络会预测出更多的背景bbox,如果直接用teacher的预测输出作为student学习的`soft label`会有严重的类别不均衡问题。解决这个问题需要引入新的方法,详细背景请参考论文:[Object detection at 200 Frames Per Second](https://arxiv.org/abs/1805.06361)。
**Attention:** Due to the overall upgrade of the dynamic graph framework, the weighting model published by PaddleDetection of PAF Net needs to be evaluated with a --bias field, for example
@@ -17,7 +17,7 @@ The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53
### 2. Configuration for training
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for vehicle detection:
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for vehicle detection: