yolov3_loss_op.h 17.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

template <typename T>
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
  float x, y, w, h;
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75 76
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
77 78 79 80 81 82 83 84 85
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
86
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
97 98 99 100 101 102 103 104 105 106
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
107 108 109
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
110 111 112 113 114
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
115 116
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
117 118 119 120 121 122 123
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
D
dengkaipeng 已提交
124
                                int input_size, int stride, T score) {
125 126 127 128 129
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

D
dengkaipeng 已提交
130
  T scale = (2.0 - gt.w * gt.h) * score;
131 132 133 134 135 136 137 138 139 140
  loss[0] += SCE<T>(input[box_idx], tx) * scale;
  loss[0] += SCE<T>(input[box_idx + stride], ty) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
D
dengkaipeng 已提交
141 142
                                    int grid_size, int input_size, int stride,
                                    T score) {
143 144 145 146 147
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

D
dengkaipeng 已提交
148
  T scale = (2.0 - gt.w * gt.h) * score;
149 150 151 152 153 154 155 156 157 158 159
  input_grad[box_idx] = SCEGrad<T>(input[box_idx], tx) * scale * loss;
  input_grad[box_idx + stride] =
      SCEGrad<T>(input[box_idx + stride], ty) * scale * loss;
  input_grad[box_idx + 2 * stride] =
      L1LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
  input_grad[box_idx + 3 * stride] =
      L1LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
D
dengkaipeng 已提交
160
                                 const int label, const int class_num,
D
dengkaipeng 已提交
161 162
                                 const int stride, const T pos, const T neg,
                                 T score) {
D
dengkaipeng 已提交
163 164
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
D
dengkaipeng 已提交
165
    loss[0] += SCE<T>(pred, (i == label) ? pos : neg) * score;
166 167 168 169 170 171
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
D
dengkaipeng 已提交
172
                                     const int label, const int class_num,
D
dengkaipeng 已提交
173 174
                                     const int stride, const T pos, const T neg,
                                     T score) {
D
dengkaipeng 已提交
175 176 177
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
    input_grad[index + i * stride] =
D
dengkaipeng 已提交
178
        SCEGrad<T>(pred, (i == label) ? pos : neg) * score * loss;
179 180 181 182
  }
}

template <typename T>
D
dengkaipeng 已提交
183
static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
184 185 186 187 188 189 190
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
191
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
192 193 194 195 196 197
          if (obj > 1e-5) {
            // positive sample: obj = mixup score
            loss[i] += SCE<T>(input[k * w + l], 1.0) * obj;
          } else if (obj > -0.5) {
            // negetive sample: obj = 0
            loss[i] += SCE<T>(input[k * w + l], 0.0);
198 199 200 201 202 203 204 205 206 207 208
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
D
dengkaipeng 已提交
209
                                       const T* input, const T* objness,
210 211 212 213 214 215 216
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
217
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
218 219 220 221 222
          if (obj > 1e-5) {
            input_grad[k * w + l] =
                SCEGrad<T>(input[k * w + l], 1.0) * obj * loss[i];
          } else if (obj > -0.5) {
            input_grad[k * w + l] = SCEGrad<T>(input[k * w + l], 0.0) * loss[i];
223 224 225 226 227 228 229 230 231 232
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

249
template <typename T>
250 251 252 253
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
254 255
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
256
    auto* gt_score = ctx.Input<Tensor>("GTScore");
D
dengkaipeng 已提交
257
    auto* loss = ctx.Output<Tensor>("Loss");
258 259
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
260
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
261
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
262 263
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
264
    int downsample = ctx.Attr<int>("downsample");
265
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
266 267 268 269 270

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
271 272 273
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
    int input_size = downsample * h;
274

275 276 277
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

D
dengkaipeng 已提交
278 279 280 281 282 283 284
    T label_pos = 1.0;
    T label_neg = 0.0;
    if (use_label_smooth) {
      label_pos = 1.0 - 1.0 / static_cast<T>(class_num);
      label_neg = 1.0 / static_cast<T>(class_num);
    }

285 286 287
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
D
dengkaipeng 已提交
288
    const T* gt_score_data = gt_score->data<T>();
289
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
290
    memset(loss_data, 0, loss->numel() * sizeof(T));
D
dengkaipeng 已提交
291 292 293
    T* obj_mask_data =
        objness_mask->mutable_data<T>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(T));
294 295
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
296

297 298 299 300 301 302
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

303 304 305 306
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
307 308
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
309
            int box_idx =
D
dengkaipeng 已提交
310 311 312
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
313 314
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
315
              if (!gt_valid_mask_data[i * b + t]) {
316 317
                continue;
              }
318
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
319
              T iou = CalcBoxIoU(pred, gt);
320 321 322 323 324 325 326
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
D
dengkaipeng 已提交
327
              obj_mask_data[obj_idx] = static_cast<T>(-1);
328
            }
329 330 331
            // TODO(dengkaipeng): all losses should be calculated if best IoU
            // is bigger then truth thresh should be calculated here, but
            // currently, truth thresh is an unreachable value as 1.0.
332 333 334 335
          }
        }
      }
      for (int t = 0; t < b; t++) {
336
        if (!gt_valid_mask_data[i * b + t]) {
337
          gt_match_mask_data[i * b + t] = -1;
338 339
          continue;
        }
340
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
341 342 343 344 345 346 347
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
348 349 350
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
351 352 353 354 355 356
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
357
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
358 359
          // TODO(dengkaipeng): In paper, objectness loss is ignore when
          // best IoU > 0.5, but darknet code didn't implement this.
360 361 362 363 364 365
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
366
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
367
        gt_match_mask_data[i * b + t] = mask_idx;
368
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
369
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
370 371
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
372
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
D
dengkaipeng 已提交
373
                                 box_idx, gi, gj, h, input_size, stride, score);
374 375

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
D
dengkaipeng 已提交
376
          obj_mask_data[obj_idx] = score;
377 378

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
379 380
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
D
dengkaipeng 已提交
381
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
D
dengkaipeng 已提交
382
                           class_num, stride, label_pos, label_neg, score);
383 384 385 386
        }
      }
    }

387
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
388
                       mask_num, h, w, stride, an_stride);
389 390 391
  }
};

392
template <typename T>
393 394 395
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
396
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
397 398
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
399
    auto* gt_score = ctx.Input<Tensor>("GTScore");
400 401
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
402 403
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
404
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
405
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
406
    int class_num = ctx.Attr<int>("class_num");
407
    int downsample = ctx.Attr<int>("downsample");
408
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
409

410 411 412 413
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
414
    const int mask_num = anchor_mask.size();
415
    const int b = gt_match_mask->dims()[1];
416 417
    int input_size = downsample * h;

418 419 420
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

D
dengkaipeng 已提交
421 422 423 424 425 426 427
    T label_pos = 1.0;
    T label_neg = 0.0;
    if (use_label_smooth) {
      label_pos = 1.0 - 1.0 / static_cast<T>(class_num);
      label_neg = 1.0 / static_cast<T>(class_num);
    }

428 429 430
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
D
dengkaipeng 已提交
431
    const T* gt_score_data = gt_score->data<T>();
432
    const T* loss_grad_data = loss_grad->data<T>();
D
dengkaipeng 已提交
433
    const T* obj_mask_data = objness_mask->data<T>();
434
    const int* gt_match_mask_data = gt_match_mask->data<int>();
435 436
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
437 438 439 440
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
441
        int mask_idx = gt_match_mask_data[i * b + t];
442
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
443
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
444 445 446 447
          Box<T> gt = GetGtBox(gt_box_data, i, b, t);
          int gi = static_cast<int>(gt.x * w);
          int gj = static_cast<int>(gt.y * h);

D
dengkaipeng 已提交
448 449
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
D
dengkaipeng 已提交
450 451 452 453
          CalcBoxLocationLossGrad<T>(input_grad_data, loss_grad_data[i],
                                     input_data, gt, anchors,
                                     anchor_mask[mask_idx], box_idx, gi, gj, h,
                                     input_size, stride, score);
454 455

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
456 457
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
458
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
D
dengkaipeng 已提交
459
                               label_idx, label, class_num, stride, label_pos,
D
dengkaipeng 已提交
460
                               label_neg, score);
461 462 463 464 465
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
466
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
467
                           h, w, stride, an_stride);
468 469 470 471 472
  }
};

}  // namespace operators
}  // namespace paddle