yolov3_loss_op.h 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

28
using Array5 = Eigen::DSizes<int64_t, 5>;
29 30 31

template <typename T>
static inline bool isZero(T x) {
D
dengkaipeng 已提交
32
  return fabs(x) < 1e-6;
33 34
}

D
dengkaipeng 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename T>
static inline void CalcL1LossWithWeight(const Tensor& x, const Tensor& y,
                                        const Tensor& weight,
                                        const T loss_weight, T* loss) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      loss[i] += fabs(y_data[j] - x_data[j]) * weight_data[j] * loss_weight;
    }
    x_data += stride;
    y_data += stride;
    weight_data += stride;
  }
}

template <typename T>
static void CalcL1LossGradWithWeight(const T* loss_grad, Tensor* grad,
                                     const Tensor& x, const Tensor& y,
                                     const Tensor& weight) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
  T* grad_data = grad->data<T>();
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      grad_data[j] = weight_data[j] * loss_grad[i];
      if (x_data[j] < y_data[j]) grad_data[j] *= -1.0;
    }
    grad_data += stride;
    x_data += stride;
    y_data += stride;
    weight_data += stride;
  }
}

78
template <typename T>
79 80 81 82 83
static inline void CalcMSEWithWeight(const Tensor& x, const Tensor& y,
                                     const Tensor& weight, const T loss_weight,
                                     T* loss) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
84 85 86
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();
87

88 89 90 91 92 93 94
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      loss[i] += pow(y_data[j] - x_data[j], 2) * weight_data[j] * loss_weight;
    }
    x_data += stride;
    y_data += stride;
    weight_data += stride;
95 96 97
  }
}

98
template <typename T>
99 100 101 102 103
static void CalcMSEGradWithWeight(const T* loss_grad, Tensor* grad,
                                  const Tensor& x, const Tensor& y,
                                  const Tensor& weight) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
104 105 106 107 108
  T* grad_data = grad->data<T>();
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();

109 110 111 112 113 114 115 116 117
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      grad_data[j] =
          2.0 * weight_data[j] * (x_data[j] - y_data[j]) * loss_grad[i];
    }
    grad_data += stride;
    x_data += stride;
    y_data += stride;
    weight_data += stride;
D
dengkaipeng 已提交
118
  }
119 120
}

121
template <typename T>
122 123 124 125 126
static inline void CalcSCEWithWeight(const Tensor& x, const Tensor& label,
                                     const Tensor& weight, const T loss_weight,
                                     T* loss) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
127
  const T* x_data = x.data<T>();
128
  const T* label_data = label.data<T>();
129 130
  const T* weight_data = weight.data<T>();

131 132 133 134 135 136 137 138 139 140
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      T term1 = (x_data[j] > 0) ? x_data[j] : 0;
      T term2 = x_data[j] * label_data[j];
      T term3 = std::log(1.0 + std::exp(-std::abs(x_data[j])));
      loss[i] += (term1 - term2 + term3) * weight_data[j] * loss_weight;
    }
    x_data += stride;
    label_data += stride;
    weight_data += stride;
D
dengkaipeng 已提交
141
  }
142 143 144
}

template <typename T>
145 146 147 148 149
static inline void CalcSCEGradWithWeight(const T* loss_grad, Tensor* grad,
                                         const Tensor& x, const Tensor& label,
                                         const Tensor& weight) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
150 151
  T* grad_data = grad->data<T>();
  const T* x_data = x.data<T>();
152
  const T* label_data = label.data<T>();
153 154
  const T* weight_data = weight.data<T>();

155 156 157 158 159 160 161 162 163
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      grad_data[j] = (1.0 / (1.0 + std::exp(-x_data[j])) - label_data[j]) *
                     weight_data[j] * loss_grad[i];
    }
    grad_data += stride;
    x_data += stride;
    label_data += stride;
    weight_data += stride;
164 165 166
  }
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
// template <typename T>
// static void SplitPredResult(const Tensor& input, Tensor* pred_conf,
//                             Tensor* pred_class, Tensor* pred_x, Tensor*
//                             pred_y,
//                             Tensor* pred_w, Tensor* pred_h,
//                             const int anchor_num, const int class_num) {
//   const int n = input.dims()[0];
//   const int h = input.dims()[2];
//   const int w = input.dims()[3];
//   const int box_attr_num = 5 + class_num;
//
//   auto input_t = EigenTensor<T, 4>::From(input);
//   auto pred_conf_t = EigenTensor<T, 4>::From(*pred_conf);
//   auto pred_class_t = EigenTensor<T, 5>::From(*pred_class);
//   auto pred_x_t = EigenTensor<T, 4>::From(*pred_x);
//   auto pred_y_t = EigenTensor<T, 4>::From(*pred_y);
//   auto pred_w_t = EigenTensor<T, 4>::From(*pred_w);
//   auto pred_h_t = EigenTensor<T, 4>::From(*pred_h);
//
//   for (int i = 0; i < n; i++) {
//     for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
//       for (int j = 0; j < h; j++) {
//         for (int k = 0; k < w; k++) {
//           pred_x_t(i, an_idx, j, k) = input_t(i, box_attr_num * an_idx, j,
//           k);
//           pred_y_t(i, an_idx, j, k) =
//               input_t(i, box_attr_num * an_idx + 1, j, k);
//           pred_w_t(i, an_idx, j, k) =
//               input_t(i, box_attr_num * an_idx + 2, j, k);
//           pred_h_t(i, an_idx, j, k) =
//               input_t(i, box_attr_num * an_idx + 3, j, k);
//
//           pred_conf_t(i, an_idx, j, k) =
//               input_t(i, box_attr_num * an_idx + 4, j, k);
//
//           for (int c = 0; c < class_num; c++) {
//             pred_class_t(i, an_idx, j, k, c) =
//                 input_t(i, box_attr_num * an_idx + 5 + c, j, k);
//           }
//         }
//       }
//     }
//   }
// }
211 212

template <typename T>
D
dengkaipeng 已提交
213 214 215 216 217 218 219 220 221 222 223 224
static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
  T b1_x1 = box1[0] - box1[2] / 2;
  T b1_x2 = box1[0] + box1[2] / 2;
  T b1_y1 = box1[1] - box1[3] / 2;
  T b1_y2 = box1[1] + box1[3] / 2;
  T b2_x1 = box2[0] - box2[2] / 2;
  T b2_x2 = box2[0] + box2[2] / 2;
  T b2_y1 = box2[1] - box2[3] / 2;
  T b2_y2 = box2[1] + box2[3] / 2;

  T b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1);
  T b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1);
225 226 227 228 229

  T inter_rect_x1 = std::max(b1_x1, b2_x1);
  T inter_rect_y1 = std::max(b1_y1, b2_y1);
  T inter_rect_x2 = std::min(b1_x2, b2_x2);
  T inter_rect_y2 = std::min(b1_y2, b2_y2);
D
dengkaipeng 已提交
230 231
  T inter_area = std::max(inter_rect_x2 - inter_rect_x1, static_cast<T>(0.0)) *
                 std::max(inter_rect_y2 - inter_rect_y1, static_cast<T>(0.0));
232

D
dengkaipeng 已提交
233
  return inter_area / (b1_area + b2_area - inter_area);
234 235 236
}

template <typename T>
D
dengkaipeng 已提交
237 238
static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
                            const float ignore_thresh, std::vector<int> anchors,
239
                            const int input_size, const int grid_size,
240
                            Tensor* conf_mask, Tensor* obj_mask, Tensor* tx,
241 242
                            Tensor* ty, Tensor* tw, Tensor* th, Tensor* tweight,
                            Tensor* tconf, Tensor* tclass) {
D
dengkaipeng 已提交
243 244
  const int n = gt_box.dims()[0];
  const int b = gt_box.dims()[1];
245
  const int anchor_num = anchors.size() / 2;
D
dengkaipeng 已提交
246 247
  auto gt_box_t = EigenTensor<T, 3>::From(gt_box);
  auto gt_label_t = EigenTensor<int, 2>::From(gt_label);
248 249
  auto conf_mask_t = EigenTensor<T, 4>::From(*conf_mask).setConstant(1.0);
  auto obj_mask_t = EigenTensor<T, 4>::From(*obj_mask).setConstant(0.0);
250 251 252 253
  auto tx_t = EigenTensor<T, 4>::From(*tx).setConstant(0.0);
  auto ty_t = EigenTensor<T, 4>::From(*ty).setConstant(0.0);
  auto tw_t = EigenTensor<T, 4>::From(*tw).setConstant(0.0);
  auto th_t = EigenTensor<T, 4>::From(*th).setConstant(0.0);
254
  auto tweight_t = EigenTensor<T, 4>::From(*tweight).setConstant(0.0);
255 256 257 258 259
  auto tconf_t = EigenTensor<T, 4>::From(*tconf).setConstant(0.0);
  auto tclass_t = EigenTensor<T, 5>::From(*tclass).setConstant(0.0);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
260
      if (isZero<T>(gt_box_t(i, j, 2)) && isZero<T>(gt_box_t(i, j, 3))) {
261 262 263
        continue;
      }

D
dengkaipeng 已提交
264 265 266
      int cur_label = gt_label_t(i, j);
      T gx = gt_box_t(i, j, 0) * grid_size;
      T gy = gt_box_t(i, j, 1) * grid_size;
267 268
      T gw = gt_box_t(i, j, 2) * input_size;
      T gh = gt_box_t(i, j, 3) * input_size;
269 270 271
      int gi = static_cast<int>(gx);
      int gj = static_cast<int>(gy);

272
      T max_iou = static_cast<T>(0);
273 274
      T iou;
      int best_an_index = -1;
D
dengkaipeng 已提交
275
      std::vector<T> gt_box_shape({0, 0, gw, gh});
276 277 278
      for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
        std::vector<T> anchor_shape({0, 0, static_cast<T>(anchors[2 * an_idx]),
                                     static_cast<T>(anchors[2 * an_idx + 1])});
D
dengkaipeng 已提交
279
        iou = CalcBoxIoU<T>(gt_box_shape, anchor_shape);
280 281 282 283 284
        if (iou > max_iou) {
          max_iou = iou;
          best_an_index = an_idx;
        }
        if (iou > ignore_thresh) {
285
          conf_mask_t(i, an_idx, gj, gi) = static_cast<T>(0.0);
286 287
        }
      }
288
      conf_mask_t(i, best_an_index, gj, gi) = static_cast<T>(1.0);
289
      obj_mask_t(i, best_an_index, gj, gi) = static_cast<T>(1.0);
290 291
      tx_t(i, best_an_index, gj, gi) = gx - gi;
      ty_t(i, best_an_index, gj, gi) = gy - gj;
D
dengkaipeng 已提交
292 293
      tw_t(i, best_an_index, gj, gi) = log(gw / anchors[2 * best_an_index]);
      th_t(i, best_an_index, gj, gi) = log(gh / anchors[2 * best_an_index + 1]);
294 295
      tweight_t(i, best_an_index, gj, gi) =
          2.0 - gt_box_t(i, j, 2) * gt_box_t(i, j, 3);
D
dengkaipeng 已提交
296
      tclass_t(i, best_an_index, gj, gi, cur_label) = 1;
297
      tconf_t(i, best_an_index, gj, gi) = 1;
298 299
    }
  }
300 301
}

302
template <typename T>
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

template <typename T>
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
}

template <typename T>
static void CalcSCE(T* loss_data, const T* input, const T* target,
                    const T* weight, const T* mask, const int n,
                    const int an_num, const int grid_num, const int class_num,
                    const int num) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < grid_num; k++) {
        int sub_idx = k * num;
        for (int l = 0; l < num; l++) {
          loss_data[i] += SCE<T>(input[l * grid_num + k], target[sub_idx + l]) *
                          weight[k] * mask[k];
        }
      }
      input += (class_num + 5) * grid_num;
      target += grid_num * num;
      weight += grid_num;
      mask += grid_num;
    }
  }
}
343

344 345 346 347 348
template <typename T>
static void CalcSCEGrad(T* input_grad, const T* loss_grad, const T* input,
                        const T* target, const T* weight, const T* mask,
                        const int n, const int an_num, const int grid_num,
                        const int class_num, const int num) {
349 350
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
351 352 353 354 355 356
      for (int k = 0; k < grid_num; k++) {
        int sub_idx = k * num;
        for (int l = 0; l < num; l++) {
          input_grad[l * grid_num + k] =
              SCEGrad<T>(input[l * grid_num + k], target[sub_idx + l]) *
              weight[k] * mask[k] * loss_grad[i];
357 358
        }
      }
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
      input_grad += (class_num + 5) * grid_num;
      input += (class_num + 5) * grid_num;
      target += grid_num * num;
      weight += grid_num;
      mask += grid_num;
    }
  }
}

template <typename T>
static void CalcL1Loss(T* loss_data, const T* input, const T* target,
                       const T* weight, const T* mask, const int n,
                       const int an_num, const int grid_num,
                       const int class_num) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < grid_num; k++) {
        loss_data[i] += L1Loss<T>(input[k], target[k]) * weight[k] * mask[k];
      }
      input += (class_num + 5) * grid_num;
      target += grid_num;
      weight += grid_num;
      mask += grid_num;
    }
  }
}

template <typename T>
static void CalcL1LossGrad(T* input_grad, const T* loss_grad, const T* input,
                           const T* target, const T* weight, const T* mask,
                           const int n, const int an_num, const int grid_num,
                           const int class_num) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < grid_num; k++) {
        input_grad[k] = L1LossGrad<T>(input[k], target[k]) * weight[k] *
                        mask[k] * loss_grad[i];
      }
      input_grad += (class_num + 5) * grid_num;
      input += (class_num + 5) * grid_num;
      target += grid_num;
      weight += grid_num;
      mask += grid_num;
402 403 404 405
    }
  }
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
template <typename T>
static void CalcYolov3Loss(T* loss_data, const Tensor& input, const Tensor& tx,
                           const Tensor& ty, const Tensor& tw, const Tensor& th,
                           const Tensor& tweight, const Tensor& tconf,
                           const Tensor& tclass, const Tensor& conf_mask,
                           const Tensor& obj_mask) {
  const T* input_data = input.data<T>();
  const T* tx_data = tx.data<T>();
  const T* ty_data = ty.data<T>();
  const T* tw_data = tw.data<T>();
  const T* th_data = th.data<T>();
  const T* tweight_data = tweight.data<T>();
  const T* tconf_data = tconf.data<T>();
  const T* tclass_data = tclass.data<T>();
  const T* conf_mask_data = conf_mask.data<T>();
  const T* obj_mask_data = obj_mask.data<T>();

  const int n = tclass.dims()[0];
  const int an_num = tclass.dims()[1];
  const int h = tclass.dims()[2];
  const int w = tclass.dims()[3];
  const int class_num = tclass.dims()[4];
  const int grid_num = h * w;

  CalcSCE<T>(loss_data, input_data, tx_data, tweight_data, obj_mask_data, n,
             an_num, grid_num, class_num, 1);
  CalcSCE<T>(loss_data, input_data + grid_num, ty_data, tweight_data,
             obj_mask_data, n, an_num, grid_num, class_num, 1);
  CalcL1Loss<T>(loss_data, input_data + 2 * grid_num, tw_data, tweight_data,
                obj_mask_data, n, an_num, grid_num, class_num);
  CalcL1Loss<T>(loss_data, input_data + 3 * grid_num, th_data, tweight_data,
                obj_mask_data, n, an_num, grid_num, class_num);
  CalcSCE<T>(loss_data, input_data + 4 * grid_num, tconf_data, conf_mask_data,
             conf_mask_data, n, an_num, grid_num, class_num, 1);
  CalcSCE<T>(loss_data, input_data + 5 * grid_num, tclass_data, obj_mask_data,
             obj_mask_data, n, an_num, grid_num, class_num, class_num);
}

template <typename T>
static void CalcYolov3LossGrad(T* input_grad_data, const Tensor& loss_grad,
                               const Tensor& input, const Tensor& tx,
                               const Tensor& ty, const Tensor& tw,
                               const Tensor& th, const Tensor& tweight,
                               const Tensor& tconf, const Tensor& tclass,
                               const Tensor& conf_mask,
                               const Tensor& obj_mask) {
  const T* loss_grad_data = loss_grad.data<T>();
  const T* input_data = input.data<T>();
  const T* tx_data = tx.data<T>();
  const T* ty_data = ty.data<T>();
  const T* tw_data = tw.data<T>();
  const T* th_data = th.data<T>();
  const T* tweight_data = tweight.data<T>();
  const T* tconf_data = tconf.data<T>();
  const T* tclass_data = tclass.data<T>();
  const T* conf_mask_data = conf_mask.data<T>();
  const T* obj_mask_data = obj_mask.data<T>();

  const int n = tclass.dims()[0];
  const int an_num = tclass.dims()[1];
  const int h = tclass.dims()[2];
  const int w = tclass.dims()[3];
  const int class_num = tclass.dims()[4];
  const int grid_num = h * w;

  CalcSCEGrad<T>(input_grad_data, loss_grad_data, input_data, tx_data,
                 tweight_data, obj_mask_data, n, an_num, grid_num, class_num,
                 1);
  CalcSCEGrad<T>(input_grad_data + grid_num, loss_grad_data,
                 input_data + grid_num, ty_data, tweight_data, obj_mask_data, n,
                 an_num, grid_num, class_num, 1);
  CalcL1LossGrad<T>(input_grad_data + 2 * grid_num, loss_grad_data,
                    input_data + 2 * grid_num, tw_data, tweight_data,
                    obj_mask_data, n, an_num, grid_num, class_num);
  CalcL1LossGrad<T>(input_grad_data + 3 * grid_num, loss_grad_data,
                    input_data + 3 * grid_num, th_data, tweight_data,
                    obj_mask_data, n, an_num, grid_num, class_num);
  CalcSCEGrad<T>(input_grad_data + 4 * grid_num, loss_grad_data,
                 input_data + 4 * grid_num, tconf_data, conf_mask_data,
                 conf_mask_data, n, an_num, grid_num, class_num, 1);
  CalcSCEGrad<T>(input_grad_data + 5 * grid_num, loss_grad_data,
                 input_data + 5 * grid_num, tclass_data, obj_mask_data,
                 obj_mask_data, n, an_num, grid_num, class_num, class_num);
}

491
template <typename T>
492 493 494 495
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
496 497
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
498
    auto* loss = ctx.Output<Tensor>("Loss");
499 500
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
501
    int input_size = ctx.Attr<int>("input_size");
502 503 504 505 506 507 508
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

509
    Tensor conf_mask, obj_mask;
510
    Tensor tx, ty, tw, th, tweight, tconf, tclass;
511
    conf_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
512
    obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
513 514 515 516
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
517
    tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
518 519
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
520
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, input_size,
521
                       h, &conf_mask, &obj_mask, &tx, &ty, &tw, &th, &tweight,
522 523
                       &tconf, &tclass);

524 525
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
    memset(loss_data, 0, n * sizeof(T));
526 527
    CalcYolov3Loss<T>(loss_data, *input, tx, ty, tw, th, tweight, tconf, tclass,
                      conf_mask, obj_mask);
528 529 530
  }
};

531
template <typename T>
532 533 534
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
535
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
536 537
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
538 539 540 541
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
542
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
543
    int input_size = ctx.Attr<int>("input_size");
544 545 546 547 548 549 550

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

551
    Tensor conf_mask, obj_mask;
552
    Tensor tx, ty, tw, th, tweight, tconf, tclass;
553
    conf_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
554
    obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
555 556 557 558
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
559
    tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
560 561
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
562
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, input_size,
563
                       h, &conf_mask, &obj_mask, &tx, &ty, &tw, &th, &tweight,
564 565
                       &tconf, &tclass);

566 567 568 569
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
    CalcYolov3LossGrad<T>(input_grad_data, *loss_grad, *input, tx, ty, tw, th,
                          tweight, tconf, tclass, conf_mask, obj_mask);
570 571 572 573 574
  }
};

}  // namespace operators
}  // namespace paddle